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ABSTRACT

A linear control subroutine library was created and

stored in a load module on Disk 02 of the IBM/360 of the

Naval Postgraduate School.

This library consists of three groups of programs:

transfer function subprograms; matrix manipulation and time

response subprograms; and modern control design routines.

The transfer function subprograms provide numerical aids

for classical control design techniques including root locus

and frequency design methods. The matrix manipulation and

time response routines allow the user to determine eigen-

values, find state transition matrices, evaluate resolvent

matrices, perform several other matrix operations and

determine and plot graphical time responses. The modern

control design programs aid in solving Linear Quadratic

Gaussian (LOG) problems and also provide the capability to

investigate sensitivity and to de-couple multi-input multi-

output systems.

This thesis is a user's manual for the library of control

design programs. Applications, extensive documentation and

numerous worked examples are included.
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I. INTRODUCTION

A large number of computer programs are available to

help today's control system engineers analyse and design

increasingly complex systems. Most of these programs, how-

ever, are available in the form of listings only, so any

one wishing to use them must punch the cards, compile and

test the routines, modify them and, most of the time, load

them everytime a problem is to be solved. Obviously this is

not a very practical and efficient way of using computers.

The intent of this thesis was to facilitate the use of

several of these programs by making them easily accessible

to all users as a pre-compiled load module library. The

features of the library were to be as follows:

- easy access to the subprograms

- only rudimentary knowledge of FORTRAN coding and card

set up procedures required to use the subprograms

- good documentation readily available to the

users (complete with subprogram descriptions, card

set up procedures and worked out examples)

- an expandable and improvable library

- good priority categories (class A or B only)

for quick turnaround.

Using these features as guidelines, a linear control sub-

* *routines library (LINCON) was created, tested and is now

available to any user on the Naval Postgraduate School IBM/360.
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The following chapters describe the computer procedures

and present these linear control subprograms contained in

the library. All the different aspects of deck preparation

and job control cards are discussed. The most common error

conditions that may occur while using the subprograms and

the remedial actions to be taken are pointed out. The linear

control subprograms are presented in a user-oriented fashion.

They are first introduced by defining their purposes and

indicating the general rules that apply. Then the subpro-

grams are individually described. The input requirements

and the output to be expected are presented in great detail.

Several examples are worked out, complete with the control

cards, the input data, the computer output and the interpre-

tations of the results.

Note that the programming aspects of the work are not

included in the presentation. Reference 1, the provenance

of most of the subprograms that constitute the LINCON library,

must be consulted in that regard, along with the actual

listings of the subroutines. Also note that reference 1

can be used as an alternative source of information in

using the subprograms.

However, Appendix A explains how the LINCON data sets

were created and gives the job control cards required to

modify, verify or erase the data sets. Information on how

to recreate the library, should it become necessary, are given

as well. Finally, Appendix B specifies the references from

which the worked examples were taken.
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II. COMPUTER PROCEDURE

The programs and subprograms described in [1], or modified

versions, together with a few locally written programs were

assembled in a load module to form a subroutine library. A

private user disk space was allocated on Disk02 of the Naval

Postgraduate School IBM/360 computer to hold the partitioned

data set and library procedures were defined and cataloged so

the library could be accessed by any computer user under OS

Batch. The details on how to access the library and use the

subprograms and subroutines are presented in the following

paragraphs and a complete description of the data set, along

with pertinent computer procedure information, is given in

Appendix A.

The system was devised in such a way as to minimize the

need for programming and provide the user with a convenient,

flexible, easy-to-utilize tool for analysis and design of

linear control systems. The programs and subprograms were

kept as separate subroutines so one, or more, programs could

be executed as a single job. The following gives a detailed

description of the different methods of accessing the library

as well as the cards necessary to run the programs under batch

processing. For convenience, the major steps of the proce-

dure are also reproduced in Section III as part of the sub-

programs presentation.

15



A. MODES OF OPERATION AND CONTROL CARDS

There are many different operating modes a user can

employ to access a given computer library. Of these methods,

three were determined to be most appropriate and are presented

hereafter. It is pointed out that these procedures only

apply to this specific set of programs, which was assigned the

name LINCON (for linear control). Also observe that each mode

implies the use of slightly different control card deck set

ups. These differences are essential to the proper operation

of the system under the selected mode of operation. Each line

must be meticulously reproduced on the computer card and the

order of appearance of the cards scrupulously respected.

1. Mode One

This mode applies when a user wants to execute only

one of the subprograms for either single or multiple runs.

Except for the subprograms named GTRESP, KALMAN and PRTLOC,

which reauire exterior subroutines, all subprograms can be

accessed using this method. Mode Two establishes the proce-

dures that deal with the three special cases enumerated above.

For Mode One, the control cards must be:

// (standard OS JOB card)

//^EXEC^LINCOF

//LINK.SYSIN^DD *

^^INCLUDESYSLIB(member)

/*

//GO.SYSIN^DD.*

16



data deck as described in Section III

for the subprogram "member"

where "member":is the simple name defining a subprogram to

be executed. For example, "include syslib(SERCOM)" would

have to be typed on the appropriate card to access the sub-

routine library program called SERCOM.

2. Mode Two

The three special cases previously mentioned are

accessed using this mode of operation. A different library

procedure was created since GTRESP, KALMAN or PRTLOC might

very well require special functions or inputs that vary as

given parameters change. This situation does not significantly

complicate the procedure and greatly adds to the system capa-

bility. Further justification and explanation are given in

Section III along with the subprogram descriptions. Again

under this second mode, the programs are to be accessed one

at a time, either for single or multiple runs. The computer

card deck set up to be provided is:

// (standard OS JOB card)

//.EXEC^LINCONF

//FORT.SYSIN^DD^*

FORTRAN deck of user supplied subroutine as

specified for GTRESP, KALMAN or PRTLOC
1*

//LINK.SYSINDD^*

17



^INCLUDE -SYSLIB (member)

-^ TRY ̂ member

//GO.SYSIN^DD^*

data deck for "member" as described

in Section III.

/*

where member is the actual name of the subprogram

to be executed. In this case, it is either GTRSP, KALMAN

or PRTLOC.

For example, "include syslib(KALMAN)" on the appro-

priate card, followed by "entry KALMAN" on the next card

would cause the subprogram called KALMAN to be run.

3. Mode Three

This mode of operation permits the user to call more

than one subprogram while executing a single job. Since this

third option calls all the subprograms at the same time, a

large amount of computer memory is required. The user must

be aware that this increases the turnaround time. Nevertheless

the method can still be very useful. For instance, a user who

is not in a hurry could utilize this set up to obtain the

solution to several simple problems which do not require

modification of some parameters.

At this point the user is reminded that great care

must be taken to correctly prepare the control and data decks.

With an increased turnaround time, errors become costly and

very frustrating.

18



When it is decided to use Mode Three, the following

computer cards must be generated:

/1 (standard OS JOB card), TIME=5

//^EXEC^LINCON,REGION.GO=350K

^A INCLUDEASYSLIB(MAIN)

/*

//GO.SYSIN^DD^*

MEMBER 1

data deck for member 1 as

described in Section III

MEMBER 2

data deck for member 2 as

described in Section III

$

where MEMBER 1, MEMBER 2, etc., are the defining names

of the subprograms to be executed and start in column one.

Note that again, as explained in Section III, the data deck

pertaining to the sane subprogram can be arranged either for

single or multiple runs. The dollar sign, $, is a stop sign

to be printed in column one. This dollar sign card must appear

after the last data deck of each "member" to be executed

under Mode Three.

B. ERROR CONDITIONS

When running programs, it is rather disappointing if

results do not come out as expected. This in itself is a good

19



reason to always verify one last time that the control cards

were punched correctly and the data deck was set up exactly

as specified. Nonetheless, both neophytes and veterans do

make mistakes and the purpose of this section is to outline

some of the most common errors and show how to identify and

correct them. The user must keep in mind that the error

conditions and messages presented below apply to the IBM/360

and were taken from [2] which is the only up-to-date source

of information on the subject.

Before any attempt is made to correct an eventual problem,

the errors must be 'exposed'. This very important step is

too often jumped over, the user opting to guess directly what

went wrong. In order to save time and effort, one should pro-

ceed more logically. The user should always check the linkage

editor and job scheduler output to ascertain that the proper

actions indeed did take place. Any messages such as '-Step-

Go-Was Not Run Because of Condition Codes' clearly indicate

what operations were not carried out and direct the user to

the problem. Using these makes it much easier for the pro-

grammer to pinpoint the malfunction and take the appropriate

action. If no faulty indications appear in the messages out-

put by the job scheduler (IEF type messages), the linkage

editor (IEW type messages), the program producing (IEY) or

the object program (IHC) and the results obtained are still

suspected to be erroneous, the user then knows he should devote

his attention to the mathematics of the problem and revise

20



the input data (i.e., the output obtained is not the result

of a 'computer error').

Some of the possible linkage editor, object program and

program producing messages are listed below. These should

give the programmer a good idea of what to expect and how to

proceed. Experience has shown that even if only a minimum of

information is provided, the user greatly benefits from having

these simple explanations at hand.

1. IEWOOO (control statement only)

This message enumerates all the control statements

passed to the linkage editor. INCLUDE and ENTRY cards are

listed for reference. It is not an error message.

2. IEW0132 ERROR - SYMBOL PRINTED IN AN UNRESOLVED

EXTERNAL REFERENCE

This indicates that the symbol printed to the right

of IEW0132 is a subprogram or subroutine which was not in the

specified load module library or other modules passed to the

linkage editor for processing. The user must make sure the

correct subroutine library was specified (i.e., LINCON or

LINCONF as required for proper mode of operation), and that

the subroutine name requested was correctly spelled.

3. IEW0222 ERROR - CARD PRINTED CONTAINS INVALID INPUT

FROM OBJECT MODULE.

In this case, either some control cards were missing,

thus causing the editor to interpret wrongly the cards that

followed, or some of the cards were punched incorrectly. The

deck should be checked.
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4. IEW0342 - LIBRARY SPECIFIED DOES NOT CONTAIN MODULE.

The subprogram or subroutine name specified on the

INCLUDE control card was not found in the LINCON library.

The user must make sure the INCLUDE card was punched as

follows:

INCLUDE SYSLIB(member)

where 'member' is the appropriate subprogram name.

5. IHC900I EXECUTION TERMINATING DUE TO ERROR COUNT FOR

ERROR NUMBER 217

IHC217I FIFOS - END OF DATA SET ON UNIT 5

Here the computer stopped executing due to lack of

data. At that instant, the problem might have been completely

solved or not. It is advisable not to take any chances. Again

the data deck should be thoroughly checked to ascertain that

the cards were set up properly and the data deck incorporated

was really the one for the specified subroutine.

6. IHC215 CONVERT - ILLEGAL DECIMAL CHARACTER (decimal

character)

The computer found the given decimal character where

a number was expected. Either the data cards were improperly

set up, the subprogram name specified was incorrect or the

FORTRAN format specified was not adhered to. Remedial actions

should be taken accordingly.

7. IEY032I NUL PROGRAM

This message indicates that no exterior subroutine

was provided when needed and that the computer considered all
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the data expected from this subroutine to be zero. Even if

this situation can sometimes be used to advantage, it is not

recommended here. The programmer should incorporate all

required subroutines in his deck. Note that this error can

only occur while accessing the library under Mode Two.

8. No error condition messages printed out but incom-

plete or no results were output by the computer. Here many

things could have gone wrong, but most likely one of the

following occurred:

- While operating under Mode Two, the ENTRY card was not

provided where required. The user must verify the program

cards for correctness.

- While operating under Mode Three, insufficient region

size was specified. The remedial action is then to increase

region size.

- While operating under any of the three modes and the

two conditions described above were not the cause, insuffi-

cient running time was allocated for the program. If the

CPU time indicated on the output and the one specified on

the JOB card matched, the user should then allow more time

for computation.

- If none of the above, an underflow or overflow condi-

tion may have occurred, causing the program to stop. In

this case the linkage editor and job scheduler output will

indicate a completion code - OCF. The user must verify the

data cards and make the appropriate corrections.
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I

The error conditions listed above are obviously not the

only ones that can occur, but they are the ones a user is

most likely to come across while employing the subroutine

library called LINCON.
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III. THE LINEAR CONTROL PROGRAMS

A. INTRODUCTION

The previous section dealt with the control statements

and the card deck arrangements required to introduce the

computer jobs to the operating system and tell the latter

everything it needs to know about the input and output

requirements. This chapter introduces the theory necessary to

use the programs, presents a precise description of all sub-

routines and data cards and gives detailed examples taken

among problems that were solved on the computer.

1. Outline

The subprograms are divided into three classes: the

transfer function subprograms, the time response and matrix

manipulation subprograms and the modern control subprograms.

The first set allows the user to obtain a root locus starting

from a block diagram or signal flow graph (RTLOC), the

roots of a polynomial and their locus (PRTLOC), the

Bode and Nyquist frequency plots (FRESP), the partial frac-

tion expansion of the ratio of two polynomials (PRFEXP) and,

finally, the roots of any polynomial (ROOTS). The second

group is composed of three subprograms which are provided for

determining the rational time response (RTRESP) and the

graphical time response (GTRESP) of linear feedback control

systems and for computing the determinant, inverse, charac-

teristic polynomial, eigenvalues, state transition matrix and

25



the resolvent matrix (BASMAT). The last group of subprograms

deals with optimal control design. It permits the user to

find the observability index of a control system (OBSERV),

to test for both controllability and observability (CONOBS),

to obtain the state variable feedback given some performance

criterion (STVAR), to determine the complete sensitivity

analysis of the closed-loop system poles variation as certain

parameters change (SENSIT), to design Luenburger observers

(LUEN) and serial compensators (SERCOM), to minimize a per-

formance index when some state variables are inaccessible,

to solve the Riccati equation to derive optimal control

-a, V'- paramqters. ad-.ntinicus Yralm&sn filters '(RIC'ATIr, -t& comput4e'

the gains of discrete Kalman filters (KALMAN), to evaluate

the feedback control gains for discrete linear regulator

problems, and, finally, to decouple multiple-input multiple-

output systems (MIMO). Table I conveniently summarizes the

above.

The purpose of each subprogram and a brief discussion

of the theory behind it are given in the subprograms presentation.

2. Input Format

The input format for each of the subprograms is com-

pletely described with their presentation and must be referred

to in each case. However, since the same general input for-

mat is used for all the programs, it is appropriate to point

out some of the similarities and the conventions adopted.

For instance, to make it easier to remember, most of the

groups of data cards have the same arrangement.
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TABLE I - The Linear Control Subprograms

Mode of
Name Purpose Operation Class

RTLOC To plot the root of a One or B
polynomial equation Three
starting from a feed-
back control system
block diagram.

PRTLOC To plot the root locus Two B
of a characteristic
polynomial.

FRESP To obtain and plot the One or A/B
frequency response of a Three
rational transfer
function over a

- .....- * - stcifie- range *of -" ...
frequencies. Both Bode
and Nyquist diagrams can
be plotted.

PRFEXP To perform the partial One or A
fraction expansion of a Three
rational function.

ROOTS To find the roots of a One or A
polynomial of order less Three
than or equal to twenty.

BASMAT To compute the determi- One or A
nant, the inverse, the Three
characteristic poly-
nomial, the eigenvalues,
the state transition
matrix, and the
resolvent matrix from
a given matrix
A (NxN).

RTRESP To determine the rational One or A
time response of a system Three
(in closed-form).
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TABLE I (Continued)
Mode of

Name Purpose Operation Class

GTRESP To obtain the graphical One or A/B
time response of a Three
system for a specified
input.

OBSERV To determine the One or A
observability index for Three
a linear system.

CONOBS To check for both One or A
observability and Three
controllability of a
linear system.

SENSIT To study the closed- One or A/B
loop poles variation Three

. Wq w -ef.a -ineai- f3edback . "
system.

STVAR To calculate the One or A
controller gain and Three
feedback coefficients
to achieve a desired
closed-loop transfer
function. Also computes
the plant transfer
function, internal
transfer functions and
determines He (s), the
equivalent sTIgle-
feedback element.

LUEN To design Luenberger One or A
Observers to achieve a Three
desired closed-loop
transfer function.

SERCOM To design a series One or A
compensator to achieve Three
a desired closed-loop
transfer function.
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TABLE I (Continued)
Mode of

Name Purpose Operation Class

RICATI To solve the differential One-or A/B
Riccati equation to Three
determine the optimum
control gains for state-
regulator problems and/or
the continuous Kalman
filter gains.

KALMAN To determine the discrete Two A
Kalman filter gains.

STREG To evaluate the discrete One or A
feedback gains of linear Three
regulator problems.

MIMO To decouple an Nth order One or A
o system with f inputs n Th "  -- ". . ..

M outputs and place the
closed-loop poles of
each decoupled sub-
system at specified
locations.

29



a. First Data Card

The purpose of the first data card of any of the

subprograms is to identify the problem for future reference

and for output data. A maximum of twenty alpha-numeric

characters (except $) can be used, starting in column one

(format 5A4). On this first card, the user also normally

defines the system order and the dimensions of the various

matrices (format 12 for each number to be entered). Note

that the dollar sign $ has been defined as a STOP and must

never be used as problem identification.

b. Matrices

Matrices are entered one row at a time either in
"". . . a. -in e .... " ... . .. . . . .. ""-* "

their original form or transposed, as specified. The input format

table presented with each subprogram indicates the correct form to

use. The vectors are always defined using lower case letters

while other matrices are identified with capital letters.

The matrix elements are punched in ten-column fields (format

8E10 or 8F10), thus a maximum of eight numbers can be given

per card. If the order of the system is greater than eight,

two cards are needed for every row.

An example will demonstrate the procedure. Assume

that the A and b matrices are:

[3.19 0.00 -10.1f1 [l.6

A = 2.45 6.40 - 0.50 b 0.0

L.00 -9.14 6.75] L15.2j
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The given A and b matrices are entered using an 8F10.3

format as follows:

card columns 1 11 21

3.19 0.0 -10.11

A 2.45 6.4 - 0.5

1.0 -9.14 6.75

bT  1.0 0.0 15.2

c. Polynomials

The polynomial data can be entered in two differ-

ent formats referred to as P mode (polynomial form) and F

mode (factored form). If P mode is selected, the letter P

(format Al) followed by the degree of the polynomial (format

12) are entered on one card. The coefficients of the polynomial

are placed on the next card(s) each in ten column fields

(format 8F10 or ElO). The polynomials are always presented

in ascending order, the constant term given first and the

coefficient of the highest term assumed to be unity. In other

words, the last coefficient entered will always be interpreted

as being 1.0, thus can be entered either as '1.0' or as a

blank. Again an example best illustrates the principles.

The given four polynomials are entered using an

SF10.3 format:

(1) Polynomials:

(i) 2 + 4s + s2

(ii) s + 5s2 + 6s
3 + s4
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(iii) 1. (highest degree coefficient

of a zero order polynomial)

(iv) 4 + s2 + s 4 + 3s6 + s 8

(2) Computer data cards:

card 1 11 21 31 41 51 61 71colums

P02

2.0 4.0 1.0

P04

0.0 1.0 5.0 6.0 1.0

P00

1.0

P08 .....

4.0 0.0 1.0 0.0 1.0 0.0 3.0 0.0

1.0

If it is desired to enter the polynomial in

factored form, then the F mode is chosen. This choice is

indicated by placing the letter F (format Al) in the first

column followed by the degree of the polynomial in the next

two (format 12). The factors are then entered one per card,

the real part in the first ten column field and the imaginary

part in the next ten columns (format 2El0 or 2F10). An

unusual convention was picked to enter all the possible factors.

The user must be careful and make sure his notation agrees

with the following:

(1) The real part of the root is entered as

positive if the factor is in the left half plane.

32



(2) The real part of the root is entered as

negative if the factor is in the right half plane.

(3) Only one of the complex conjugate roots is

entered and it must be with the one with the positive

imaginary part.

(4) If the polynomial is a constant, it must

equal 1.0 and be entered in the P mode. as shown below.

Examples covering many possibilities are shown next.

Factored polynomials;

(i) (s + 3) (s - i)

(ii) s(s + 4)(s + 1 + j)(s + 1 - j)

(iii) 1.0
(iv) (s-)(s-2 + j5) (s- 2- j5) (S + 3) (s + 3)

Computer data cards:

F02

i) 3.

-1.

F04

0.0
ii)

4.0

1.0 1.0

P00
iii)

1.0
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F04

-1.0

(iv) -2.0 5.0

3.0

3.0

One good way to remember how to work around this

confusing notation is to always enter the real parts as they

appear in the factored polynomial and include the positive

imaginary part only. In other words, one can analyse any

situation in the following manner:

(s + _0) Cs.+. 3). (s. - 14. .s * L.. j~ 4s.. + I

where the circles indicate the numbers to be punched.

d. Multiple Runs

One last common characteristic of the input data

is that one or several data decks pertaining to the same

subprogram can be stacked and run as a single job. In other

words, one complete data deck is prepared for each problem

but the decks are all put one on top of the other and read in

to the computer preceded only by one set of control cards.

The user must realize, however, that this feature

implies more runs to be performed in a single job and thus

the time limit to be specified on the JOB control card must

be estimated accordingly.
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3. Output Format

The output of all of the subprograms is quite com-

prehensible and need not be explained. Nevertheless confusion

may arise due to certain factors that are commented upon here.

For the matrices, the same rules as for the input apply;

vectors are listed out as transpose matrices and all other

types of matrices are presented one row at a time. For

convenience, polynomials are always output both in polynomial

and factored forms no matter how they were provided as input.

As for the input, the coefficients appear in ascending order,

the constant term first. In factored form, the roots are

listed with their normal sign convention; the left half

plahe'rdots "e fegativf and those in thefftht- hAlf -plar-

positive.

Hence there is a sign inversion between the input

and the output for the factored case.

B. THE TRANSFER FUNCTION SUBPROGRAMS

This set helps the user to analyse or design feedback

control systems by providing a means of obtaining quickly the

roots locus, Bode diagrams, Nyquist plots, partial fraction

expansions and polynomial roots.

1. Root Locus (RTLOC)

This subprogram calculates and plots the roots of the

equation

1 + K G(s) = 0

35



where G(s) is a rational function of the form

G(s) N(s)
D(s)

The user must provide N(s), D(s) and a range of value for

K. Since a choice of two ways to vary K from minimum to

maximum gain exists, an option card is also required.

a. Input

The observations and the table presented below

should be sufficient to use the subprogram which can be

called under Mode One or Mode Three (as described in Chapter

II):
-. a *~ .q * * *

( N(s) can be input either in P form or F form

(2) D(s) can be input either in P form or F form

(3) K values must be all positive or all negative. If

both are desired, two separate runs must be made. Also, the

maximum gain value cannot be zero.

(4) An option card must be included to indicate whether or not

a particular region of the root locus is to be drawn (zoom capa-

bility). A blank option card implies no option is desired. Note

that selecting a specific region improves the accuracy of the plot.

The last card tells the computer to plot only

the roots locus in the rectangle in the s plane defined by:

amin < Re[s] < amax
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wmin - ras wmax

as illustrated in Figure 3-1.

Ww

amax

wmin
min

Standard Magnified

Fig 3-1 Magnified and Standard Root Locus

Thus a standard root locus plot is obtained by leaving the

option card blank, while a magnified root locus is plotted

by punching a "l" in the first column and specifying the

minimum and maximum values of a and w. The input formats

for RTLOC are given in Table II.

b. Output

The problem identification is given, followed by

the numerator and denominator polynomials, both in factored

and 'ascending coefficients' form, and the minimum and maximum
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Entry Input Description Format Columns Used

1 Problem Identification 5A4 1-20

2 letter P or F (for P
form and F form),
Order of N(s) (< 10) Al, 12 1, 2-3

3 Enter N(s) in format 8E10.0 1-10, 11-20,
specified on previous etc.
card

4 Letter Por F (for P Al, 12 1, 2-3
form and F form),
Order of D(s) (< 10)

5 Enter D(s) in format 8El0.0 1-10, 11-20,
specified on previous etc.
card

, .. .. ..N1injmum.vab1ieof gain, .... -8EL.0..I0, l-. 11-..
maximum value of gain
( 0)

7 No option = blank card Ii, 9X, 1, 11-20,

Option 0 8E10.0 21-30, 31-40,415
minimum value of a, 41-50
maximum value of a,
minimum value of w,~aximum value of

Table II - Input Format Table for RTLOC
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gains. The roots' real and imaginary parts are then listed

as the gain varies from its minimum to maximum value.

Finally the root locus plot is printed out. Note that the

graph produced has square grids so that the true angles can

be measured.

This is normally a class B program and time = 2

should be specified on the JOB card.

c. Example

Obtain the root locus of the following feedback

control system:

_+ K (s + i

S 2 + 4s + 5
s 3 +7s 2 +20s +50 --rm

Fig 3-2 Feedback Control System for RTLOC Test.

The equation for which the roots are to be found is then:

1 + K (s+ 1) (s 2 + 4s+ 5) =0
s (+ 3) (s3 + 7s2 + 20s+ 50)
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It agrees with the RTLOC structure so one can proceed further.

N(s) = (s+ 1) (s+ 2+ jl) (s+ 2-jl)

and

D(s) = 0 + Os + 150s + 110s 3 + 41s 4 + 10s 5 +s 6

Here it is easier to enter N(s) in factored form and D(s)

as an ascending polynomial.

As a first guess, the range of variation of the

gain is chosen to be from 0.0 to 100.0 and since the expected

plot is unknown, no option is taken.

This completes the work. The computer does the

rest provided the cards are punched as follows:

// (standard OS JOB card) , TIME=2

//^EXEC^LINCON

//LINK.SYSIN^DD^*

^ INCLUDE ^SYSLIB (RTLOC)

/*

//GO.SYSIN^DD^*

RTLOC TEST

F03

1.

2. 1.

P06

0.0 0.0 150. 110. 41. 10.
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0.0 100.

(blank card)

/*

The results appear in Figs. 3-3A and 3-3B. Note

that the user should mark the open-loop poles and zeroes for

easier interpretation.

2. Root Locus (PRTLOC)

As the name indicates, this subprogram is a modified

version of RTLOC. It calculates the roots of a polynomial

and plots them. The method to input the data differs slightly

but the ultimate goal remains the same.

a. Input

This subprogram can only be used under Mode Two

of operation. The coefficients of the polynomial must be

entered using a simple subroutine called RPOL(C,G) which must

be typed as follows:

SUBROUTINE RPOL(C,G)

DIMENSION C(20)

C() = fnct (G)

C(2) = fnct (G)

C(n+l) = 1.0

RETURN

END

where n = order of the equation.
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Figure 3-3A Root Locus Test - Numerical OutputAc.,nrS 42
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C(l),..C(n+l) = coefficients of the polynomial, in ascending
order. Note that the coefficient of the
highest order term C(n+l) must be 1.0 and
need not be entered.

fnct (G) = defining coefficient equation in terms of
G, the gain. The function could very well
be a constant only.

The remaining data, i.e., the problem identifica-

tion, range of gain values and option,are entered as follows:

ENTRY Input Description Format Columns Used

1 Problem identification, 5A4, 1 - 20

Order of the polynomial, 12 21 - 22

2 minimum value of gain, 8E10.0 1 - 10, 11 - 20

maximum value of gain
0)

3 {no option = blank card} Ii, 9x, 1, 11-20, 21-30, 31-40

option # 0, 8E10.0 41-50

minimum value of a,

maximum value of a,

minimum value of w,

maximum value of w.

Table III - Input Format Table for PRTLOC

Here again, the gain values must be either all

positive or all negative and the maximum gain cannot equal

zero.
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The first card, in addition to the usual problem

identification must contain the polynomial order in columns

21-22.

The last card is used to indicate whether or

not a portion only of the root locus is to be refined and

plotted. If the option is selected, a number greater than

zero is punched in the first column, followed in columns

11-50 by the parameters defining the rectangular portion to

be blown up (see example). If this option is not desired,

the card is left blank. Note that this version permits us

to find the roots of any characteristic equation with a single

varying parameter G.

b. Output

The problem identification and the minimum and

the maximum gain are first listed out for future reference.

Next, the root values are given as the gain varies and the

root locus plotted. The execution time to be included on the

JOB card should be "time = 2".

c. Example

While trying to solve problem 7.26 in Shinners

[31, one comes across the following characteristic equation

for part of the system:

432s + 9.15s 3 + (1.32+ 20K2)s2 + (26K2 - .15)s + (6K2 + 0.675) = 0

At this point the root locus is desired to determine what

value of K2 is required to satisfy some criterion. Since
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the characteristic equation is specified explicitly, PRTLOC

is selected.

First the coefficients are sorted out and written

as functions of G where G is equal to K2 .

s**O coefficient : C(1) = 0.675 + 6.*G

s**l coefficient : C(2) = -0.15 + 26.*G

s**2 coefficient : C(3) = 1.32 + 20.*G

s**3 coefficient: C(4) = 9.15

Note that the coefficient of the highest order term is always

taken as 1.0 and need not be included. The above data is to

be entered by writing the subroutine RPOL(C,G).

The order of the equation is 04. The range of

gain values to be investigated is from 0.0 to 20.0 and since

no refined plot is desired at this point the last card is

a blank card.

The following cards then constitute the entire

deck to be input to the computer:

// (standard OS JOB card) ,TIME!2

//^EXEC ̂ LINCONF

//FORT. SYSIN ̂ DD ̂ *

SUBROUTINE RPOL (C,G)

DIMENSION C(20)

C (1)=0. 675+6.0*G

C (2)=-0.15+26.0*G

C(3)=l. 32+20.*G

C(4)-9.15

RETURN

END
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/*

//LINK.SYSIN^DD^*

-INCLUDE^SYSLIB(PRTLOC)

^^ENTRY^PRTLOC

/*

//GO. SYSYN DD^*

PRTLOC TEST ONE 04

0.0 20.0

(blank card)

/*

The results obtained with this first run as are shown in Figs.

3-4A and 3-4B. However they do not permit us to evaluate the

gain precisely enough and a second run is made, this time

using the option. The rectangular portion where magnification

is desired is defined by:

0min -5.

a =5.
max

Wmin - -1.

wmax 5.

Note that this option not only concerns the plotting but also

produces a larger number of gain values. Thus, in order not

to have too many values listed out unnecessarily, it is good

practice to re-specify the range. It was decided to change

it to vary from 0.0 to 10.0.
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Figure 3-4A PRTLOC Test One -Numerical Output
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Since the characteristic ecuation did not change,

only the data deck is to be modified. These last three

cards are given below.

PRTLOC,TEST TWO 04

0.0 10.0

1 -5.0 5.0 -1.0 5.0

This magnified portion of the root locus is

presented in Fig. 3-5A and 3-5B

3. Frequency Response (FRESP)

This subprogram determines the frequency response of

a rational transfer function

G(s) =K N(s)
(s)

and plots the response in the form of a Bode or/and Nyquist

diagram, as specified.

a. Input

The problem identification, the gain and the two

polynomials N(s) and D(s) are entered followed by the minimum

and the maximum radian frequency values, the number of fre-

quency values to be used (smaller or equal to 500), the inter-

polation and discrete value options, the Bode plots and the

Nyquist diagrams options and, only if required, the discrete

frequency values.

It might look complex at first, but the subprogram

is very simple to use and the results obtained are quite good.

The routine is accessed under Mode One or Mode Three. The
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Figure 3-5A PRTLOC Test Two -Numerical Output
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input format table and the example that follows demonstrate

the procedure to be used.

Entry Input Description Format Columns Used

1 Problem identification 5A4 1-10

2 The gain K 8E10.0 1-10

3 letter P or F (for P form Al,12 1, 2-3
or F form), order of
N(s) < 10

4 Enter N(s) in format 8E10.0 1-10, 11-20,
specified on the previous etc.
card

5 letter P or F (for P form Al, 12 1, 2-3
or F form), order of
D(s) < 10

6 enter D(s) in format 8El0.0 1-10, 11-20,
specified on the etc.
previous card

7 minimum radian frequency (30), 2E10.0 1-10,
maximum radian frecuency, 11-20,
number of frequency values 13 21-23,
to be used (<500)

option I: logarithmic
interpolation
= 000 13 24-26,

discrete values
supplied = 001

linear interpolation = 002

option B: Bode plot = 000 13 27-29
no Bode plot = 001

option N: Nyquist plot = 000 13 30-32
no Nyquist plot
=001

8
(if and discrete frequency values 8E10.0 1-10, 11-20,
only if etc.
optionI

=001

Table IV - Input Format Table for FRESP
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Here the option card is a bit complex, but it

provides great flexibility. The following ideas should help

(1) The first three entries specify the range and the

number of data points for the Bode and/or Nyquist plot. One

must recall that the Bode magnitude plot is log-log; the Bode

phase plot is log-linear (angles in degree) while the Nyquist

is a polar plot. Thus, minimum and maximum radian frequency

values should be carefully chosen. For example, w min = 0.01

and wmax = 100 could be a good choice in a given problem

while being absurd for another one.

(2) Option I specifies the type of interpolation to be used

to generate the values between the minimum and maximum frequency.

If Option I = 000, logarithmic interpolation is used to

select the frequency value. Either plot

can be obtained while specifying this option.

If Option I = 001, the user must enter on the following

cards the frequency values for which

he wants G(jw) to be evaluated. The

number of frequency values must

again be less or equal to 500. No

plot can be obtained when this option

is selected, only tabular outputs.

If Option I = 002, linear interpolation is used to select

the frequency values for which G(jw)

is to be computed. Only the Nyquist

plot can be obtained when this option

is used.
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(3) Option B indicates whether or not Bode diagrams are

to be drawn.

If Option B = (1OO. %r I-a -. ill he -13,r - .

If Option B = 001, Bode plots will not be output*

(4) Similarly, option N is used to specify whether a

Nyquist plot is desired or not.

If option N = 000, it is desired

If option N = 001, it is not desired.

(5) The options card is not followed by any card except

when option I is equal to 001. If this is the case, the

frequency values must be entered using an 8E10.0 format.

Note that an option card containing only the minimum and the

maximum frequency values and the number of points to be

evaluated indicates that both Bode and Nyquist plot are

desired.

b. Output

The problem identification, the value of the gain,

the coefficients of the polynomials N(s) and D(s) as well as

their roots are listed for reference. Next, the radian fre-

quency, the real and imaginary part of G(jw), the magnitude

IG(jw)l, the magnitude in db, the phase in radians and the

phase in degrees are printed out in tabular form for the

indicated number of frequency values (smaller or equal to

500).

If option B = 000 has been selected, the magnitude

and phase Bode diagrams are given. Note that the phase angles

are always normalized to lie between -180* and +180*.
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If option N has been requested, the Nyquist

diagram is plotted with the points linearly, or logarithmically,

spaced out.

Normally the CPU time required to run the program

is less than 20 seconds (class A).

c. Example One

The Bode plot for the loop transfer function is to

be obtained for the following system:

+ 6 0(s +50
_s (s + 10)>

s+ 20

Fig. 3-6 Compensated Control System for FRESP Test

The first step is to define G(s). Here it is simply

G(s) = 60[ (s + 50)
D(s ) s (s + 10) (s + 20)

The gain is 60 and since both N(s) and D(s) are already

factored, they can best be entered using F form. The minimum

and maximum frequencies are arbitrarily chosen to be 0.1 and

100, respectively. The number of frequency values for which

G(jw) is to be evaluated is 50. Since a Bode diagram is

desired, option I must equal 000 (logarithmic interpolation)

56

- j



and option B also equals 000. In this case a Nyquist plot

is not desired and option N is entered as 001.

The control cards and-data-deck Eo iin the sub

program are then:

// (standard OS JOB card)

//^EXEC^LINCON

//LINK.SYSIN ̂DD^*

INCLUDE^SYSLIB(FRESP)

/*

//GO.SYSIN DD *

FRESP TEST ONE

60.

FOl

50.

F03

0.0

10.0

20.0

0.1 100. 050000000001

1*

The Bode diagrams are shown in Fig. 3-7 (A-C). Note

that the phase versus frequency diagram presented is not in

error but simply due to the fact that the angle values are

normalized to be within -180 and +180 degrees. This is

useful since it permits one to rapidly determine where the

-1800crossing occurs.
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d. Example Two

The problem to be solved now requires that only

a Nyquist plot be obtained for foth ollowing gn -Loq.

transfer function of a compensated system:

G(s) (s +0.7) (s +0.15)20
(s +7) (s + 0.015) (s + 1) (s + 2)s

The frequency range is selected to be from 0.2 to 10.0 and

calculations are to be carried out for twenty-five frequency

values using logarithmic interpolation. The-computer deck is

then:

// (standard OS JOB card)

//^ EXEC^ LINCON

//LINK. SYSIN^DD^*

^^INCLUDE^SYSLIB (FRESP)

//GO.SYSIN^DD^*

FRESP TEST TWO

20.0

F02

-.15

0.7

F05

0.0

1.0

2.0

0.015
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7.

0.2 10.0 025000001000

/*

Results are shown in Figs. 3-8A and 3-8B.

4. Partial Fraction Expansion (PRFEXP)

This subprogram performs the partial fraction

expansion of the ratio of two polynomials of the form

=KN(s)

G(s) (s) (degree of N(s) <

degree of D(s))

a. Input

The problem identification, the gain value K and

the polynomials N(s) and D(s) are entered according to the

following input format table:

ENTRY Input Description Format Columns Used

1 Problem identification 5A4 1-20

2 gain value K 8F10.3 1-10

3 letter P or F (for P form Al, 12 1, 2-3
and F form), order of
N(s) < 10

4 enter N(s) in form specified 8F10.0 1-10, 10-11,
on previous card etc.

5 letter P or F (for P form Al, 12 1, 2-3
and F form), order of
D(s) < 10

6 enter D(s) in form specified 8F10.0 1-10, 10-11,
on previous card etc.

Table V - Input Format Table for PRFEXP
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D(s) must not have multiple complex roots for the subprogram

to work. If it does, a message is printed and the problem
terminates at that point. Note that D(s) may have multiple

real roots though.

b. Output

The problem identification and the gain value are

listed followed by the numerator and the denominator in both

factored and unfactored forms. For the denominator,

each root value is listed once only with its multiplicity

indicated. Note that roots are considered equal if their real

and imaginary parts do not differ by more than 0.005. The

example presented in c. illustrates how to deal with multi-

plicity of roots in the interpretation of the results. The

residue matrix real and imaginary parts is then given.

This subprogram can be run as a class A job.

c. Example

The partial fraction expansions of the following

rational functions are to be performed:

(a) 20

656+ 752s+ 264s 2 + 28s 3 + s 4

(b) 2 s

2+ 4s+ 3s 2 + s 3

N(s) and D(s) are entered using both the F and the P forms and

the partial fraction expansions of the two polynomial ratios can

easily be obtained in a single run by stacking the data deck.
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The computer cards are:

/1(standard OS JOB card)

/1EXECALINCON
do . W . ..- . - - -lo

I/LINK. SYSIN ,DD,*

.AINCLUDESYSLIB (PRFEXP)

i/GO. SYSIN ^DD,^*

PARTIAL FRACTION A

20.

POO

1.0

P04

656. 752. 264. 28. 1.0

PARTIAL FRACTION B

1.0

F01

2.0

P03

2.0 4.0 3.0 1.0

and the solutions are presented in Fias. 3-9A and 3-9B.

Interpretation of these results gives:

(1) Partial fraction A = .0139 + j .0124 + .0139 - j.0124
s+12+j4.47 s+12-j 4.47

+ -.0278 + .1667
s+2 (s+2) 2
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* - . _ . _ - PAWIA.F?(jL- ~ . -PACBLE.d 1,6NTIFI .ATIU;d - PARTIAL FRACTION A
NUMERATGR GAIN - 2.OCOE C1

NUMERATCA CC.!FF. - IN ASCENCIhC POWEAS

I O:)0E 00
0ENOMIPJATCR CCEFF. - IN ASCF ClhG POWERS

6-560E 032 7.S20E 02 2.640k 02 2.80OE 01 I.OOCE 00

CEKCMINATS. RCOTS
REAL PART IM.C. PART PLLTIPLtCITY

-1.159992lu 01-4.412594dz 00 1
-1.19559921-. 01 4.472155'.t 00 1
-2.0011177T1 00 0.0 2

RESIDUZ MATRIX - RrJL PART

1.3-6925'05c-02
I .3&92505,!-02

-2.77850117-02 1.6669762F-01

RESICUE PATRIx - ID'AG. PART

1 .2423638c-02
-1.2423633E-02
0.4 3.0

Figure 3-9A Partial Fraction Expansion A

PARTIAL FRACTICN AXPANSICS
PR01LEA 102 W'TIFICATICN - PAR T IAL FRACTICN 8
hiM)ERATOR GAIN - 1.000C 00

NUMERATOR COEFr. - IN ASCENDIFKG POWERS

2.03CE 01) 1.003'! 00

hM:A~AT0AJ RCOTS

Rt':&L PART IMAG. PART
-2.Gj,)000G3: 00 0.0
DEN3MINATOA COEFF. - IN ASCE!AOING POWTRS

Z.OOOE 00 4.00OO- 00 3.00C2 00 L.000E 00

CENCMINATOA ROCTS

RFAL PART P410. PAPI Mt.LTIPLICITY
-1 .0 )03) P-i 00-1 *jt01.Olae 00 1
-I .O3i~oociz cr0 1 * fCC -L3~ Or, I
-9.S9994 -01 0.0 1

rEsICUE M'ATRIX - REAL PAFT
-4.9999C5=-Ol

RESICUE PMArRIx - IP4AG. PART

4 999992ai-ol

Figure 3-9B Partial Fraction Expansion B
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Note that the second residue appearing in the output belongs
2

to (s+2) . If a multiplicity three had been the case, a

third residue would have been the numerator of a cubic.

(2) Partial fraction B 5 .5+j5 + -5-j. + --
slj s+l-j ~

5. Roots of a Polynomial (Roots)

This subprogram finds the roots of a polynomial of

degree less or equal to twenty.

a. Input

The first data card contains the problem identi-

fication in the first twenty columns and the polynomial order

in columns 21-22 (format 12). On the next card(s) the poly-

nomial coefficients starting with the lowest order term are

entered (format 8E10.0). These two entries are repeated for

every polynomial to be factored. Note that the highest order

term coefficient must be unity.

Entry Input Description Format Columns Used

1 Problem identification, 5A4 1-20
polynomial order 12 21-22

2 polynomial coefficients 8E10.0 1-10, 11-20,
in ascending order 21-30, etc.
(highest order term
coefficient being one)
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b. Output

The problem identification and the polynomial

coefficients are listed for reference. The roots' real and

imaginary parts are then printed.

c. Example

The following polynomials are to be factored:

s3 +1

s4 + s3 + 12s2 - 5s + 1

s5 +s 2 +sS +s +S

The computer cards are then:

//(standard OS JOB card)

//^EXEC^LINCON

//LINK.SYSINDD^*

^ ^ INCLUDE^SYSLIB(ROOTS)

//GO.SYSIN^DD^*

Roots test one 03

1.0 0.0 0.0 1.0

Roots test two 04

1.0 -5.0 12.0 1.0 1.0

Roots test three

0.0 1.0 1.0 0.0 0.0 1.0/*
The result is shown in Figure 3-10.

C. TIME RESPONSE AND MATRIX MANIPULATION SUBPROGRAMS

These three subprograms permit a user to analyze linear

control systems for rational and graphical time response and
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also provide matrix manipulation to easily solve for deter-

minants, inverses, state transition and resolvent matrices,

eigenvalues and characteristic polynomials.

The control system must be linear and represented in state

variable form as [1]

k(t)=A x(t) + b u(t)

u(t)=K[r(t) - k Tx(t)]

y(t)=c x(t)

where u(t), r(t) and K are scalar and the system order is less

or equal to ten. In block diagram form, the matrix system can

be represented as

+ u (t) x(t) y (t)
,controller fc

Fig 3-11 Linear Control System Block Diagram.

The diagram readily shows all the elements to be provided for

the study of any given system. For instance one can view that

Tsetting k = 0 gives an open-loop system and that unforced sys-

tem analysis can be done by simply letting r(t) = 0.
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1. Basic Matrix Manipulation (BASMAT)

This subprogram is used to perform various calculations

associated with the plant matrix A of a given linear control

system. It is a class A job and must be run under Mode One

or Mode Three.

a. Input

The problem identification and the dimension of A

are given on the first card. Next the A matrix is entered,

one row at a time using an 8E10.5 format. Thus, if the dimen-

sion of the matrix is eight or less, one row per card. Other-

wise the 9th and/or 10th elements appear on a second card and

the rule becomes one row per two cards. The last card indi-

cates what matrix operations are to be performed. The key to

obtain the proper results is explained after the input format

table.

Entry Input Description Format Columns Used

1 Problem identification 5A4,I2 1, 2-3
dimension of A(N < 10)

2 A(N xN) matrix 8E10.5 1-10,11-20,etc.
(one row per card
for N < 8; one row per two 8E10.5 1-10,11-20,etc.
cards for N >8)

3 option det 0, determinant II 1,
desired

1, determinant I1
not desired

option inv 0, inverse desired I1 2,
1, inverse not

desired
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Entry Input Description Format Columns Used
1

option phi(s) 0, 0(s) desired I1 3,

1, 0(s) not
desired

option C.E. 0, characteristic Ii 4,
polynomial
desired

1, characteristic
polynomial
not desired

option eigen 0, eigenvalues II 5,
desired

1, eigenvalues
not desired

option phi(t) 0, 0(t) desired I1 6.
1, ((t) not

desired

Table VI - Input Format Table for BASMAT

Thus, a zero indicates that the computation is desired while

a number from 1 to 9 informs that the listed operation is not

to be performed. Six zeros or a blank card would result in an

output that contains the A matrix determinant, inverse, resolvent,

characteristic polynomial, eigenvalues and state transition matrix.

b. Output

The problem identification and the A matrix are

listed first. Then the result of each operation selected on

the option card is printed as follows:

(1) det (A) - a scalar

-1(2) A - a matrix presented one row at a time

(3),(4) resolvent matrix and characteristic polynomial.

1 (s) A [sI -A]-1, which is called the resolvent matrix,
is the Laplace-transform of the state transition matrix

(t) = At .
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The coefficient matrix of the numerator of the

resolvent matrix appears first, followed by the character-

istic polynomial in ascending powers of s.

(5) Eigenvalues - listed indicating the real and imaginary

parts

(6) Time domain state transition matrix - 0(t) (see part c,

example two).

The subprogram is restricted by the fact that 0(t)

cannot be calculated if eigenvalues are multiple. If a situa-

tion where the state transition matrix is requested where

eigenvalues are not simple, a message is printed (see part

c, example one) and the computer goes to the next problem.

Note that eigenvalues are considered to be identical if their

real parts and their imaginary parts differ by less than

0.005.

c. Examples

(1) Example One
-i

The resolvent matrix (sI - A) and the state

transition matrix 0(t) are to be found for the plant matrix

A 00 1

0. 0 -2

Thus, the matrix has dimension N = 3. The options are set

equal to the following values:
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option det = 1 determinant value is not desired

option inv = 1 inverse A -1is not to be calculated

option phi(s) -0 N(s) is desired

option C.E. = 0 characteristic polynomial is desired

option eigen =0 eigenvalues are to be computed

option phi(t) =0 e W is desired.

The computer card deck is then:

//(standard OS JOB card)

//,EXECLINCON

//LINK.SYSIN.DD.*

-INCLUDESYSLIB (BASMAT)

BAMTTEST ONE 03

0.0 1.0 0.0

0.0 0.0 1.0

0.0 0.0 -2.0

110000

The computer results shown in Fig 3-12 can be interpreted as

follows:

s +2s s+2 1 J ?s2

0(s) 0 s 2 +2 s 1s+1

(s+2 2S s(s4-2)

U0 0 1
s+2
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Pk L 0 IUtT F~ ICtI oo- 8ASPAT TEST CNE

4.uC0)0f 00 Z. CICCULF 00 100C00OOOE 00
0AJ -c..CCCc')0C 00 1.000000(0f 0n

-a4 .lcccccc 00 2:0O00f00F 00

THE -ATPIX COEFFICIENTS CF TI-f NUS4FRAT-R CIF 14E RESOLVENT MATRIX

TI~f MATRIX CCFFZtC!ENT (F S**2

I.00C000!E 00 a.0 0.0
0.0 I.CCCCCCE c0 0.0
0.a 0.0 1.0000001E 00

7149 IATPIA 1O!PFICIENT CF S#*l

-#.,COG(uOE 00 i. GCOiC(F la 0000001OF 00
0.3 -&.CCt2~CCi 01 1:0C)000 O'1
U.0 -4.0CLG(C6i.- 01 -1.0ca00000 01

TIF MEATRIX CCEFF~I~k% CF 00

1.59999lis Q1 -3.0accOrE nl0 -.. 00000r 00
0.0 7.-9f? 33 -4.0000011f 00
0.0 1.6c~cc0Eo 01 2.3999985c 01

TI.! CDAACFFISTIC PCL'rI.CV0!AL - 1~4 ASCENDING P~wFRS nF S

-a.i9914vai 01 4.79,585E 0i -1.2000000E 01 1.00000001E 00

THEEt.N'AtjiF~OPTb. APA'RIA
REAL FAI. IDEAzMR PART

*.OUGIJ&5F 00 0.0

!1r-.%VfiUC5 "JST 8F SIMPLE
CALC'JLA 104S C.AWdAvT BE CEP PLETED 90OP THIS PROPLEM

Figure 3-12 BASMAT Test One
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The state transition matrix 0(t) cannot be obtained since the

eigenvalues are not simple.

(2) Example Two

This second example shows the complete

solution, i.e., determinant, inverse, resolvent matrix,

characteristic polynomial, eigenvalues and state transition

matrix, for a case where

. . 2.5'

A 1 3.4 7.

09 1.1 1. 1

Since all the calculations are requested, the option card is

aft blank. The card deck is

// (standard OS JOB card)

//^EXEC^LINCON

//LINK.SYSIN ̂ DD^*

INCLUDE^SYSLIB(BASMAT)

/*

//GO.SYSIN ̂DD *

BASMAT TEST TWO 03

2.0 2.2 2.5

5.1 3.4 7.1

0.9 1.1 1.1

(blank card)

/*
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Results appear in Fig 3-13. Interpretation of these results

is fairly straightforward. For instance, the first term of

the resolvent matrix, O(s), is

2 - 4.5s - 4.07

s - 6.5s2 - 8.54 s + 0.049

and, similarly, the first term of the transition matrix,

0(t), is

oill(t) (0.475e+ 0 .0 0 5 7 t + 0.229e - l1 1 3 t + 0.296e + 7 .6 2 t

2. Rational Time Response (RTRESP)

This subprogram may be used whenever it is desired to

obtain the time response in closed form [] of a linear control

system described by the following set of equations:

x(t) = A x(t) + b u(t)

u(t) = K[r(t) - kT x(t)]

y(t) = c x(t)

The system can have any initial conditions x(t ) but the scalar

forcing function r(t) must have a rational Laplace transform

such that

(r(t) = R(s) G ,(s) where G is a constant,
78sS ,
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Figure 3-13 BASMAT Test Two
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and

2 2
N(s) = a0 + a1s + a2s + ... + s

2 m
D(s) = b + bs + b s + ... + s

with m > Z > 0.

Arrange the polynomials so the coefficients in the highest

order terms of both N(s) and D(s) are unity and select the input

gain G as required.

In addition to the above, it is necessary that the

total order of the system, i.e. order of D(s) plus dimension

of A be smaller than or equal to ten. This limitation is not

overly restrictive but must be taken into account when handling

large order systems.

a. Input

The system matrices, feedback coefficients and the

controller gain are entered immediately after the problem

identification and system order card. The A matrix elements

are presented one row at a time. The transpose control vector

b T, the output vector c, the feedback coefficients ki, k2,

k3 F ..., kn and the controller gain K are given using an

8F10.4 format.

Next the initial conditions x1 (0), x2 (O), ... ,

Xn('., the input gain G and the numerator and the denominator

input polynomials are entered. Both N(s) and D(s) may be

entered in factored (F) form or unfactored (P) form and it is
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noted that the degree of D(s) must be strictly larger than the

degree of N(s).

It is suggested that a signal flow graph, or at

least a matrix block diagram, be sketched before an attempt

is made to run this subprogram. It does not take long to do

so and much can be gained.

The execution time for the subprogram is less than

20 seconds for most cases (class A).

Entry Input Description Format Columns Used

1 Problem identification, order 5A4, 12 1-20, 21-22
of the system (N < 10)

2 plant matrix A (one row per 8F10.4 1-10, 11-20,
card if N < 8; one row per etc.
two cards if N > 8)

3 Control matrix bT (1 xN) 8F10.4 1-10, 11-20,
(on one card if N < 8; etc.
two cards if N > 8T

4 Output vector Q(l xN) 8F10.4 1-10, 11-20,
(on one card if N < 8, etc.
on two cards if N 7 8)

5 feedback coefficients kl,k 2  8F10.4 1-10, 11-20,
..., kn (on one card if etc.
N < 8; on two cards if N > 8)

6 Controller gain K 8F10.4 1-10

7 Initial condition x (0), 8F10.4 1-10, 11-20,
x (0), ... , xn( 0 ) (n one etc.
cird if N < 8, on two
cards if N > 8)

8 Input gain G 8F10.4 1-10

9 Letter P or F (for P form Al, 12 1, 2-3
or F form), polynomial
order X < M
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Entry Input Description Fo.,at Columns Used

10 Enter N(s) in form.t. 8F10.4 1-10, 11-20,
specified on the previous etc.
card.

11 Letter P or F (for P form Al, 12 1, 2-3
or F form), polynomial
order M < 10

12 Enter D(s) in format 8F10.4 1-10, 11-20,
specified on the etc.
previous card.

Table VII - Input Format Table for RTRESP

b. Output Format

All the information given as input is repeated

for reference. The polynomials N(s) and D(s) are presented

both in factored and unfactored forms.

The rational time response of each component of

the state vector x(t) and the scalar output y(t) are printed

in pseudo-matrix form. Here again a hypothetical example can

clarify the presentation. For a two-state problem, assuming

complex poles and a step input, the computer output would look like:

THE TIME RESPONSE OF THE STATE X(t)

THE VECTOR COEFFICIENT OF EXP(A)T * COS(B)T

X11 x 12

THE VECTOR COEFFICIENT OF EXP(A)T * SIN(B)T

x 21 x 22

THE VECTOR COEFFICIENT OF EXP(0.0)T

x31  x32
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where xll, x12, x2 1, x2 2, x3 1 and x32 are numbers. The result

would be interpreted as:

x1 (t) = x 11 * exp(at) * cos(bt) + x21 * exp(at) * sin(bt) +

x2 (t) = X12 * xp(t) * cos(bt) + * exp(at) * sin(bt) + x32

The procedure to obtain y(t) is the same. Note

that if more than one output y(t) is desired, the subprogram

must be rerun changing the c matrix each time.

c. Example

The open-loop rational time response is desired

for

Y(s) -. 1923
X(s) 2 + 2.346s + 3.846

The first step is to get the signal flow graph

and state equations.

.1923 1/s 1 1/s 1

R~)X 2 (s) X ) Y(s)

-2.3 6

-3.846

Fig 3-14 Control System for RTRESP Test
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xl(t) = x 2 (t)

x 2 (t) = -3.846Xl(t)- 2.346x 2 (t) + .1923u(t)

u(t) = r(t)

y(t) = X1 (t)

The data from the system is then:

A = -3.846 -2.34 6 ]

Tb = [0.0 .1923]

c = [1.0 0.0]

Tk = (0.0 0.0j

K = 1.0

x(O) = 0

The system time response in closed form is required

for a step input of magnitude 2. Thus

2R(s) =
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and the data are

input gain = 2

N(s) = 1

D(s) = s

The control and data cards to run the program are as follow:

// (standard OS JOB card)

//^EXEC LINCON

//LINK.SYSIN^DD *

^^INCLUDESYSLIB (RTRESP)

//GO. SYSIN^DD*

RTRESP TEST 02

0.0 1.0

-3.836 -2.346

0.0 0.1923

1.0 0.0

0.0 0.0

1.0

0.0 0.0

2.0

P00

1.0

FOl

0.0
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The results shown in Fig. 3-15 are interpreted as:

(t) - -.1 * exp(-1.173t) * cos(l.57t) - .075 * exp(-1.173t)

* sin(l.57t) + 0.1

x2 (t) - 0.245 * exp(-l.173t) * sin(l.57t)

y(t) = xl(t)

3. Graphical Time Response (GTRESP)

The subprogram is a slightly modified version of the

one presented by Melsa and Jones [1]. It still determines the

time response of the closed loop system

x(t) = A x(t) + b u(t)

u(t) K[r(t) - kT x(t)]

y(t) = c x(t)

with initial conditions x(t0) and displays the results both

in tabular and graphical forms. However, instead of having

all the desired plots drawn on one graph only, it also produces

one graph for every selected variable.

The subprogram solves linear systems. It is a Class

B job when graphical output is requested but reduces to a

Class A job when tabular output only is to be listed. The

subprogram must be accessed under Mode Two and requires an

exterior subroutine to define the scalar forcing input r(t).
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Figure 3-15 RTRESP Test - Computer Output
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a. Input

The first element to be input is the forcing func-

tion r(t). A short defining subroutine must be written in

the following manner:

SUBROUTINE RFIND (T, R)

(FORTRAN statements defining r(t))

(Example: R = 2.5*T+SIN(4.2*T)

RETURN

END

Next the remaining parameters are entered as a data deck which

closely resembles the one for RTRESP. The problem identifica-

tion and system order (N < 10) are given on the first card.

T
Then the N x N plant matrix A, the single row matrix b , the

output matrix c, the feedback coefficient matrix k T , the con-

troller gain K and the initial conditions x(t0 ) are presented

as indicated on the input format table. The next-to-last card

specifies the time factors: the initial time, the final time,

the integration step size and the frequency of output are

given in an 8E10.0 format. The last card enumerates the

variables to be plotted versus time.

Here some specifics regarding the time specifications

and the variables to be plotted must be remembered.

(1) Common sense must be used when selecting the initial

and final time. Intelligent guesses should be made based on

experience and the system dynamics.
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(2) The integration step size is also related to the system

dynamics. It should be small enough to give a precise solu-

tion but not excessively small as to increase the computing

time unnecessarily. As a rule of thumb one can start by

letting the integration step size be

(final time) - (initial time)DT=
1000.

(3) The frequency of output (FREQ) determines both the

number of points to be plotted in the total time interval and

the physical dimension of the graph. The formula to determine

the value of FREQ is

(final time) - (initial tie)FREQ = (integration step size)(number of points to be plotted

= (No. of time steps)/(No. of points plotted)

where the number of points to be plotted must always be less than

or equal to 100. Equivalently one can say that the plotting

is constrained by the equation

FREQ > (final time) - (initial time)
(integration step size) (100)

This relationship is very important. It restricts the user

but also permits him to establish in advance the number of

points to be plotted per curve and the scaling of the time

axis. This is illustrated by the following example.

Assume that the initial time is 0.0, the final time

is 10.0 and the step size is 0.005. What value should be
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used for the frequency of output, FREQ? Using the rule

stated above,

FREQ > (10.0 - 0.0) _ 20
(.005)(100)

Thus the frequency of output must be greater than or equal to

twenty. Expecting a moderately oscillating time response, a

"number of points to be plotted" equal to fifty is decided

upon. Thus,

FREQ (0 - 0) 40(.005)(50)

giving a sampling interval (S.I.)

S.I. = (FREQ) (Step Size) = (40) (.005) = 0.2

In summary, for this example, setting FREQ equal to 40 would

give an output of 50 points, each 0.2 seconds apart between

the initial value TI = 0.0 and the final value TF = 10.0

seconds.

Note that the physical dimension of the graph is

directly proportional to the number of points to be plotted.

Fifty points usually gives a good drawing and is suggested as

starting value.

(4) Approximate equations for the graph dimension are pre-

sented as extra information only. These do not help to solve

the problem but give an idea of what to expect:
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I1!
dependent variable or y axis = 36 cm (fixed)

independent variable or t axis = (.318)x (number of points) cm

The last card of the data deck indicates what dependent varia-

bles are to be plotted. A maximum of eight graphs can be

output for every program run. If tabular output only are

desired, the last card is left blank. The variables for which

time responses are to be drawn are specified by giving the

symbol that corresponds to the desired variable:

Symbol Variable to be plotted Symbol Variable to be plotted

1 xl(t) 8 X8(t)

2 x2(t) 9 x9(t)

3 x3(t) S xl0(t)

4 x4(t) R error signal

5 x5(t) U controller input

6 x6(t) Y output

7 x7(t) R forcing input

Table VIII - Symbol Indicating Variables
to be Plotted by GTRESP

where the error signal is defined as

e(t) = r(t) - y(t)

All the above is summarized by the following table:
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Entry Input Description Format Columns Used

1 Problem identification, order 5A4, 12 1-20, 21-22
of the system (N < 10)

2 Plant matrix A(N xN) (one row 8E10.0 1-10, 11-20,
per card if N < 8 or one row etc.
per two cards Tf N > 8)

3 Distribution matrix bT (1 xN) 8E10.0 1-10, 11-20,
(one card if N < 8 or two etc.
cards if N > 8)-

4 Output vector c (1 xN) (one 8E10.0 1-10, 11-20,
card if N < 8 6r two cards etc.
if N > 8)

5 feedback coefficients kk 2, 8El0.0 1-10, 11-20,
k n (one card if N 8 etc.

o- two cards if N > 8) -

6 Controller gain K 8E10.0 1-10

7 Initial condition x1 (to), 8E10.0 1-10, 11-20,
x (t ), ..., x (t ) (on one etc.
cird if N < 8 Br ?wo cards
if N > 8)

8 Initial time TI, 8E10.0 1-10,
final time TF, 11-20,
step size DT, 21-30,
frequency of output FREQ 31-40.

9 Any of the following symbols 8A1 1,2,3,4,5,6,7,8
in any of the first eight
columns of the card (maximum
of 8):

Y,R,U,E,1,2,3,4,5,6,7,8,9,A

Table IX - Input Format Table for GTRESP

b. Output

The problem identification, A, b T c, k T , K, x(t )

the initial time TI, the final time TF, the integration step

size DT and the frequency of output FREQ are printed out for

future reference. Then the tabular output of all the state
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variables together with the control input u(t) and the output

y(t) are listed versus time. Finally, the graphical outputs

are given. As mentioned earlier, one graph is produced for

each selected variable. At the end of the run, a compact

solution is presented by plotting all the curves on a single

graph.

c. Example

An uncompensated system is described by

Xl(t) = x2 (t)

x2(t) = u(t)

The system is compensated by feeding back both

states and the graphical time response is to be obtained for

initial condition only. The initial conditions are x1 (0) = 10.0

and x2 (0) = 0.0. The controller gain equals 1.6.

The following diagram represents the complete

system:

r(t) + f x 2W f>x1C

Fig 3-16 Feedback System for GTRESP Test
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Since only the time response to initial conditions is required

for the problem, r(t) is set equal to zero. The system order

is two and

A = , = [0 1] , C = [0 01

T
The feedback coefficient matrix k = [1. 1.]

The controller gain K = 1.6

The initial conditions x(0) = [10. 0]

From the dynamics of the system, a final time of 10

seconds is chosen.

An integration step size of 0.02 is sufficiently small.

The time equations imply that

(1) FREQ > (10 - 0) 5
(.02) (100)

(2) 50 points are chosen to cover the ten second

interval so

FREQ = (.0-) = 10
(.02) (50)

(3) One value is going to be plotted every (DT)x(FREQ)

or 0.2 second.

(4) The estimated dimensions of the graph can be evaluated

as

94



- dependent variable axis =36 cm

- independent variable axis =(.318) (50) =15.9 cm

The variables to be plotted are u(t), x 1 (t) and x 2 (t).

All the above are entered as specified on the input format

table and the subroutine RFIND(T,R). The complete computer

cards set up is then:

// (standard OS JOB card) ,TIME=2

//^EXEC.LINCONF

//FORT .SYSINDD.*

SUBROUTINE RFIND (T,R)

R= 0.0

RETURN

END

//LINK. SYSINDD,*

_INCLUDE (GTRESP)

,-ENTRY ^GTRESP

I/GO. SYSIN,DD,*

GTRESP TEST 02

0.0 1.0

0.0 0.0

0.0 1.0

0.0 0.0

1.0 1.0

1.6

10.0 0.0
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/*

Results are shown in Fig. 3-17A-E

D. MODERN CONTROL SUBPROGRAMS

The following set of subprograms may be used to analyze

and design linear feedback control systems which are to achieve

a specified closed-loop transfer function.

This group of nine subprograms consists of: the supporting

subprograms OBSERV, CONOBS, SENSIT which provide the user

with a means of checking the observability and controllability

of a system and its sensitivity to parameter variations; the

subprograms STVAR, LUEN and SERCOM which help design optimal

linear control systems with complete or incomplete state

measurements; RICATI and KALMAN which find the feedback and

control gains necessary to optimize a given function either

for continuous or discrete systems; finally, MIMO which is a

computer aided technique to determine feedback control laws

for multiple-input multiple-output systems where the number

of inputs equals the number of outputs.

The subprograms SENSIT, KALMAN and RICATI are normally

Class B subprograms and require a "TIME = 2" specification on

the JOB card. All others are Class A. Except for KALMAN

which must be operated using Mode Two, all the subprograms

are accessed under Mode One or Mode Three.
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1. Observability (OBSERV)

This subprogram determines the observability index of

the linear, time invariant, Nth order system

x(t) - A x(t) + B u(t)

y(t) = C x(t)

The observability index r of the above system is

defined [4] as the smallest positive integer for which the

matrix [C, ATC, ... , (AT)r-IC] has rank N.

a. Input

The problem identification, the order of the system

and the number of rows of the C matrix are entered on the first

data deck card. Then the A matrix is presented one row at

a time followed by the C matrix, also one row at a time.

Entry Input Description Format Columns Used

1 Problem identification, 5A4 1-20, 21-22,
order of the system (N < 10), 212 23-24
number of rows of C (M ' 10)

2 A (N xN) matrix (one row per 8F10.3 1-10, 11-20,
Bard if N < 8; one row per etc.
two cards 1f N > 8)

3 C (M xN) matrix (one row 8F10.3 1-10, 11-20,
er card if M < 8; one etc.
row per two cards if M > 8)

Table X - Input Format Table for OBSERV
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b. Output

The problem identification, and the A and the C

matrices are listed for reference. Then either "(A,C) is

unobservable" is printed or the observability index is given.

(If the observability index equals N the number of states,

the system is completely observable.)

c. Example

The following set of matrices are to be checked

for observability condition

F-1 -2 -2

(1) A 0 -1 1 and C = [l 1 0]

03

(2) A = 2 1 and C

2 0 z

Here, both (1) and (2) are solved in the same run, placing the

data decks one on top of the other giving:

// (standard OS JOB card)

//^EXEC^LINCON

//LINK. SYSIN^DD^ *

^^INCLUDE^SYSLIB (OBSERV)

I/GO. SYSIN ADD *

OBSERV TEST ONE 0301
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-1.0 -2.0 -2.0

0.0 -1.0 1.0

1.0 0.0 -1.0

1.0 1.0 0.0

OBSERV TEST TWO 0302

2.0 1.0 0.0

0.0 2.0 1.0

0.0 0.0 2.0

0.0 1.0 3.0

0.0 2.0 4.0

/*

and the solution is shown in Fig. 3-18.

2. Controllability and Observability (CONOBS)

The subprogram is a modified version of OBSERV. It

is used to determine the observability index and check the

controllability of a linear, time-invariant control system of

the form

x(t) = A x(t) + B u(t)

y(t) = C x(t)

a. Input

The input is the same as for OBSERV except that

the BT matrix must be included. The input deck starts with

the problem identification card which also contains the system

order, N, the number of rows of BL, and the number of outputs,
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Figure 3-18 Observability Subprogram Tests
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M. Next the A matrix (N xN), the BT matrix (L xN) and the

C matrix (Mx N) are entered one row at a time using an 8F10.4

format.

Entry Input Description Format Columns Used

1 Problem identification, 5A4, 1-20, 21-22,
system order (N" < I), 312 23-24, 25-26
number of rows of B (L < 10),
number of outputs (M < 10)

2 A (N xN) matrix (one row per 8F10.4 1-10, 11-20,
card if N :. 8; one row per 21-30, etc.
two cards if N > 8)

3 (L xN) matrix (one row 8F10.4 1-10, 11-20,

per card if N < 8; one row 21-30, etc.
per two cards Ef N > 8)

4 C (M xN) matrix (one row 8F10.4 1-10, 11-20,
per card if N < 8; one 21-30, etc.
row per two cards if N > 8)

Table XI - Input Format Table for CONOBS

b. Output

The problem identification and all three matrices

are output for reference. Then two sentences are printed

indicating whether or not the (A,C) system is observable

and the (A,B) system is controllable.

c. Example

The following systems are to be tested for observa-

bility and controllability:
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0 210 f

x(t) = o -1 0 x(t) + 0 0 u(t)

-3 -4 -2 0

y(t) = x(t)

(2) [201
x(t) 0 -1 x (t) + 0 u(t)

C3 0 -2j 0 O

y(t) = x(t)

Here again, both solutions are obtained in a single run using

one set of control cards before the two consecutive data

decks.

For (1),

A(3 x 3) = 1 0

-3 -4 -2

C(l x 3) = [l 0 0]
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Thus system order N = 3, number of rows of BL 2 and the

number of outputs M = 1.

For (2),

F2 0

A(3 x 3) = -1 1

-3 0 -2

B(2 x 3) = O

C(l x 3) = [1 0 01

and the system is of order N = 3, with L =2 and M =1.

The control cards and data decks are then as follow:

// (standard OS JOB card)

// EXEC ̂ LINCON

//LINK.SYSIN^DD^ *

S^INCLUDE ̂ SYSLIB (CONOBS)

/*

//GO.SYSIN^DD^*

CONOBS TEST ONE 030201

-2.0 0.0 1.0

0.0 -1.0 0.0

-3.0 -4.0 -2.0

0.0 0.0 1.0
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1.

1.0 0.0 0.0

1.0 0.0 0.0

CONOBS TEST TWO 030201

-2.0 0.0 1.0

0.0 -1.0 1.0

-3.0 0.0 -2.0

0.0 0.0 1.0

1.0 0.0 0.0

1.0 0.0 0.0

/*

The results are presented in Fig. 3-19.

3. Sensitivity Analysis (SENSIT)

This subprogram is used to obtain the root locus of

the closed-loop poles of the (single-input single output)

linear control system

x(t) = A x(t) + b u(t)

u(t) = G[r(t) - kTx(t)], where G is a scalar,

as a single element of the plant matrix A,or the control

vector hor the feedback coefficients matrix k , or the con-

troller gain K varies between some specified values. As

already mentioned, the subprogram studies the effect of a

single parameter variation and plots the result. If, for

the same system, it is desired to consider more than one

parameter variation the user indicates his choices by providing
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Figure 3-19 Controllability and Observability Subprogram Tests
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one option card per element to be varied and the computer

completes one root locus for each parameter. The end of a

problem is indicated by a blank card. After that card, a

data deck pertaining to other systems may be included if

desired.

Execution times for this subprogram are normally more

than 20 seconds. Thus TIME = 2 should be specified on the JOB

card. Mode One or Mode Three is to be used to access the

subroutines.

a. Input

The problem identification and the system order

(N < 10) are presented on the first card. Next the plant

matrix A (N x N) and the bT (U x N) matrix are entered, followed

by the feedback coefficients kI , k2 , ..., kn , and the controller

gain G. Then the option card is given, indicating the element

to be varied, the number of parameter values to be used, and

the minimum and the maximum values of that parameter. This

card, with the proper modification, is repeated once for each

element to be varied. F.nally a blank card indicates the end

of the problem.
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Entry Input Description Format Columns Used

1 Problem identification, 5A4 1-20, 21-22
order of the system (N < 10) 12

2 (N xN) matrix (one row per 8F10.3 1-10, 11-20,
card if N < 8; one row per etc.
two cards If N > 8)

3 bT (1 xN) matrix (one card SF10.3 1-10, 11-20,
if N < 8; on two cards if etc.
N > 8)

4 kT (1 xN) coefficients matrix SF10.3 1-10, 11-20,
(one card if N < 8; two cards etc.
if N > 8)

5 Controller gain G 8F10.3 1-10

6
(repeat (1) element to be varied Al 1
this (letter A if the
entry once element is part of A,
for each letter B if the -
paraieter element is part of b,
%bich is K if the element is-
to be one of the feedback
varied) coefficients, G if the

element is the
controller gain)

(2) row number of the element 12, 2-3
if from A, b, or k.
Otherwis5 set equal to
00.

(3) column number of the 12, 4-5
element if from A.
Otherwise set eqiual
to 00.

(4) number of parameter values 15, 6-10
to be used.

(51 minimum value of the F10.3, 11-20
parameter.

(.6) maximum value of the F10.3 21-30
parameter.

7 blank card (this indicates (blank) (blank)
the end of the problem)

Table XII - Input Format Table for SENSIT
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The user must be very careful while preparing the

option cards. The following example can best illustrate the

procedure. Suppose it is desired to get the root locus of

the poles of a closed-loop system as the parameter a24 varies

from 0.0 to 100.0. A *number of parameter values to be used"

of 20 is selected giving the following option card:

colum 12 3 4 5 6 7 8 9 10 U 12 13 14 15 16 17 18 19 20 21 22 23 24

data A0 2 0 4 0 0 0 2 0 0 . 0 1 0 0

If for the same problem, it is also desired to study the

variation of the closed-loop poles as b3 varies from 0.0 to

100.0 with a "number of parameter values to be used" of 10 and

also as G varies from -1600. to -1200. with a "number of

parameter values to be used" of 25, then the two added option

cards would be:

column 1 2 3 4 5 6 7 8 9 10U1213 14 15 16 17 18 19 20 21 22 23 24 25 26

data B0 3 0 0 0 0 0 10 0 . 0 1 0 0

data G0 0 0 0 0 0 0 2 5 - 1 6 0 0. -1 2 0 0.

b. Output

The problem identification, the A, b T , k Tmatrices

and the gain value G are listed first. Then the first element

to be varied and its minimum and maximum values are printed,

followed by each parameter value and the closed-loop poles

associated with it. Finally the root locus plot is given for

each element to be varied.
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Note that the "number of parameter values to be

used" should be kept small. Since the values of the roots

are calculated and printed for each parameter value, 100

values should be regarded as a practical maximum.

c. Example

The stability of the following system is to be

investigated under gain variation and the effect of the non-
1

perfect integrator (-L-) looked at.

Fig 3-20 Control System for SENSIT Test

First the state equations

x1 (t) = -ex 1 (t) + x2 (t)

x2 (t) = -2x 2 (t) + x3 (t)

x3 (t) - -x3 (t) + u(t)

u(t) = G[r(t) - x1 (t)]

are written, giving the following data:
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Order of the system: N = 3

A 0 -2 1

J [0 0 1]

TkT = [1 0 01

The gain G is to be varied from 0 to 10 with E set to zero,

and a "number of values to be used" of 20 seems reasonable.

The value of e is also to be varied with G set to its nominal

value of 1.0. First e is set equal to zero in the A matrix.

A range of variation of 0 to 1 and a "number of values to be

used" of 25 are selected.

The control and data cards are:

// (standard OS JOB card),TIME=2

//^EXEC^LINCON

//LINK.SYSIN^DD^*

^ INCLUDEASYSLIB(SESIT)

//L. SYSIN DD^*

SENSIT TEST 03

0.0 1.0 0.0

0.0 -2.0 1.0

0.0 0.0 -1.O
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0.0 0.0 1.0

1.0 0.0 0.0

1.0

G0000000200.0 10.0

A010100025 0.0 1.0

(blank card)

The results are presented in Fig. 3-20(A-D).

4. State Variable Feedback (STVAR)

This subprogram is a very powerful aid for design and

analysis of any single-input single-output linear, time-

invariant system represented by the states equations

x(t) = A x(t) + b u(t)

u(t) = K[r(t) - kT x(t)]

Y(t) = S x(t)

It permits one to find internal transfer functions

of the form Xi(s)/U(s), the plant transfer function Y(s)/U(s),

the closed-loop transfer function Y(s)/R(s) and the equivalent

feedback transfer function He (s). In addition, this subpro-

gram calculates the controller gain and the feedback coeffi-

cients necessary to achieve a specified closed-loop transfer

function. It is to be run as a Class A job and is accessible

under Mode One or Mode Three.
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The procedure is not very complex, but

requires understanding. All the information needed by

the user to solve state variable feedback problems is

presented in the following paragraphs. However, the theory on

which the subprogram is based is not given. The user who

wishes to learn more about it should refer to the texts by

Schultz and Melsa [5], Melsa and Jones [1], Eveleigh (6] or

others.

a. Input

(1) Basic Cards

As usual the problem identification and the

system order are given on the first data card, followed by

the plant matrix A (N x N) and the transpose control vectors

bT (1 x N). From this input (which is always required) the

subprogram verifies the controllability of the system. Three

possible controllability conditions may be found by the

computer. One, the system is completely controllable and no

special message is printed. Two, the system is numerically

uncontrollable. In other words, it is theoretically controlla-

ble but uncontrollable in a numerical sense. This situation

arises when the controllability matrix

2 n-l
E = [B AB AB ... ABn l

cannot be accurately inverted using the programmed algorithm.

The matrix and its calculated inverse are then multiplied

together and checked against the identity matrix to provide a
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measure of the uncontrollability of the plant. If the des-

cribed condition occurs, the message "plant is numerically

uncontrollable" is given accompanied by "MAX. DEVIATION=number",

where "number" is the value of the deviation from the identity

matrix. Reference 1 states that a maximum deviation value

larger than 10- 3 to 10- 5 has been found to indicate diffi-

culty. The last controllability condition is "the system is

uncontrollable", and is indicated as such. Note that even if

the plant is determined to be uncontrollable, the computer

solves the problem and presents the results. The option of

accepting or. rejecti-g -the eolutmio -is -the -designer'speroga-.

tive.

(2) Open-Loop Cards

The next input cards specify which open-loop

transfer functions are to be computed. These cards need not

be provided if no internal transfer function is desired. The

way to identify the internal transfer functions to be output

is by using ficticious cf matrices. The following example

demonstrates the procedure. Suppose the internal transfer

functions X2 (s)/U(s) and Xl(s)/X 4 (s) are desired for a fourth

order system. Since only Xi (s)/U(s) type of transfer functions

are computed by the subprogram, X1 (s)/U(s), X2 (s)/U(s) and

X4 (s)/U(s) are requested and the user then only needs to

divide X1 (s)/U(s) by X4 (s)/U(s) to obtain Xl(s)/X 4 (s). The

fictitious cf matrices to be provided as input are then:
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xI(s)

(1) for Us)-'

Cf = [1 0 0 0]

X(s)
(2) for U(s) 

'

= [o 1 0 01

X4 (S)
(3) for Us)'

Cf = to 0 0 1]

• .. • .... .. a•

" Following these cards, the real output matrix c and a null

matrix 0 (lx N) must be entered. The real c matrix is used
Y(S)

to compute u and correctly solve the rest of the problem.

The 0 matrix is necessary to indicate the end of open-loop

calculations.

(3) Closed-Loop Cards

Finally the closed-loop input data are given.

Here again the user has a choice among three options.

The first of these closed-loop computations

is for analysis only. This choice is indicated by an option

card on which the letter A is printed in column one. Following

this card, the feedforwaid gain K and the feedback coefficient

matrix kT are given as specified on the input format table.

From this input, the subprogram determines the closed-loop

characteristic polynomial and the numerator of the equivalent

feedback transfer function (both the factored and unfactored
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forms). From these, the block diagram shown in Fig. 3-21

can be drawn where Gp (s) = Y(s)/U(s) and H eq(s) is the

equivalent feedback transfer function.

R _) U(S) " G(S) Y >(S)

Fig 3-21 H Form Block Diagrameq

The other two closed-loop. comiutation. are .- • - - . . .w

for design purposes. They are used to calculate

the controller gain and the feedback coefficients necessary

to achieve a given closed-loop characteristic polynomial.

This desired polynomial is the denominator of Y(s)/R(s) and

must agree with the system order. If the characteristic

polynomial is to be entered in P form, an option card with

the letter P in column one is presented followed by one (if

n < 8) or two (if n > 8) cards containing the coefficients in

ascending order. The coefficient of the highest degree term

must always be 1.0 and may be entered as ten blank spaces.

On the other hand, if it is more convenient to present it in

factored form, the option card has the letter F in the first

column and the next cards give the real and imaginary parts

of the root using a 2E10.0 format.
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Since a user may very well wish to obtain

the closed-loop computations for many different characteristic

polynomials or try out several values of feedback or feed-

forward gains, the subprogram allows one to ask for as many

closed-loop computations as desired by placing the input

cards one on top of the other.

(4) Problem Termination Card

The last card must be blank. It indicates

the end of the problem and must always be present, whether

or not the closed-loop portion is included. The following

format table conveniently summarizes all the above.

K- - - *: . -- . -. * S

Entry Input Description Format Columns Used

1 Problem identification, 5A4, 12 1-20, 21-22
(Basic) system order (N < 10)

2 Plant matrix A (Nx N) (one 8E10.0 1-10, 11-20,
(Basic) row per card for N < 8; one etc.

row per two cards for N > 8)

3 Control vector b ( x N) 8E10.0 1-10, 11-20,
(Basic) (one card for N-< 8; two etc.

cards for N > 8)

4 cf (1 xN) (one card for 8E10.0 1-10, 11-20,
(open- Nf< 8; two cards for N > 8) etc.
loop) (repeat if several fictitious

matrices)

5 Output matrix C (lxN) (one 8E10.0 1-10, 11-20,
(open- card for N < 8; two cards etc.
loop) for N > 8)

6 Null matrix Q (1 x N) (one 8E10.0 all
(end of blank card for N < 8; two
open- blank cards for N-> 8)
loop
part)
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Entry Input Description Format Columns Used

7 Letter A in column one Al 1
Analy-
sis

8 Feedforward gain 8ElO.0 1-10
Analy-
sis

9 Feedback coefficient matrix 8E10.0 1-10, 11-20,
Analy- kT (1 x N) (on one card for etc.
sis N < 8; two cards for N > 8)

10 Letter P in column 1 Al 1
Design
option;
unfactored
form

11 Desired characteristic poly- 8E10.0 1-10, 11-20,
Design . nomnal coefficients (one.Qne-. -etc.- - -
option; card if N < 8; two cards if
unfac- N > 8). See p. (31) for
tored details
form

12 Letter F in column 1 Al 1
Design
option;
factored
form

13 Desired characteristic poly- 8E10.0 1-10, 11-20.
Design nomial roots (one per card,
option; real part followed by
factored imaginary part. See p. (32)
form for details

14 Blank card (indicates the 8E10.0 blank
end of this problem)

Table XIII - Input Format Table for STVAR
Note that entry (4) must be included if no internal transfer

function is desired. The same also applies to entries (7-8-9)

if analysis option is not desired and (10-11) and/or (12-13)

if no design option is taken.

b. Output

The problem identification and the A and bT

matrices are given and, if applicable, a numerically or
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completely uncontrollable situation is indicated. Next the

open-loop calculations are presented. The denominator

coefficients in ascending powers of s and the roots of the

denominator polynomial are listed at the beginning of the

section. Then, if requested, each ficticious cf matrix

followed by the numerator of the corresponding transfer func-

tion is printed. The last output of this section is the c

matrix and the numerator of the plant transfer function.

The user is reminded that the ficticious cf matrices indi-

cate which X. ()/U(s) is computed while the c matrix specifies
1

the real output y(t) which is used to calculate Y(s)/U(s).
. * -- The iAst sectibn of the printout concerns the

closed-loop calculations. If the analysis mode was selected,

"KEY=A" is printed followed by the numerator of the equiva-

lent feedback transfer function, H eq(s), both in factored and

unfactored forms. Note that the complete H (s) is obtainedeq

by taking the "numerator of H eq" (given in the closed-loop

calculations) and dividing it by the numerator associated with

the real c matrix (given as the last part of the open-loop

calculations). Next the feedback coefficients and the gain

are listed for reference and the computed closed-loop char-

acteristic polynomial and its roots are given.

If computations of the feedback coefficients and

the feedforward gain to achieve a desired closed-loop char-

'I acteristic polynomial was requested, the computer output

shows "KEY-P" or "KEY-F", depending on the design mode
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selected. Then, as for the analysis mode, the numerator of

the Hq (s) is given, followed by the feedback coefficient

matrix kT and the feedforward gain K. Here it must be pointed

out that the subprogram calculates the gain K so zero steady-

state error results from a step input. A designer who wishes

other conditions may rescale K and J appropriately by hand.

For example, suppose it is desired to have the controller

gain K = K1 but the computer output shows that K = K0 with

the feedback coefficients k1 , k2 and k . The procedure is

then to modify the results by setting

W - .. -. ... . . -K " , .

and setting

T K0
~ = l~kl k2  k3]

This does not change Y(s)/R(s) and satisfies the condition
K - K Finally a parameter called "maximum normalized

error" is associated with each closed-loop calculation. The

value of this parameter indicates the exactitude with which

the problem was solved by the computer. This number can help

to determine the validity of a solution, especially when

numerical uncontrollability was encountered to start with.

c. Example

Eveleigh [61 presents the ideas of design of

control systems using state-variable feedback and works out
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two examples, the first of which is solved here by the

computer method described previously. The problem can be

stated as follows: given the plant transfer function

10Gp(s) = s(s+l) (s-3)

find each state feedback gain and the feedforward path gain

necessary to achieve the closed loop transfer function,

10
G(s) =1

s3+4s 2 +9s+10

The first step of the procedure is to get the

state variable representation of the sygtem...The fo],Ls%,i'2g *

signal flow graph may be obtained:

5K 1/s 2 !/s 1 1/s 1
U(s) - X3 . 0 Y(s)

CI( -K,

Fig 3-22 Signal Flow Graph for STVAR Test

By inspection,

A 0- 21
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bT = [0 o 5]

C = [1 0 0]

Normally the user first runs the subprogram for

open-loop calculations. Then he either uses it for analysis

or for design. To illustrate all the possibilities, the

subprogram was applied to solve the same problem using all

of the different modes.

(1) Open-Loop Test

For the case at hand, assume the solution is

.. .to .%clude.e internaL nt 's)7(s.' Tiuls

the input data requires a ficticious cf matrix to be added,

i.e.

f = [o 1 0]

The computer card deck for this simple

open-loop test is:

//.(standard OS JOB card)

//^EXEC^LINCON

//LINK.SYSIN^.DD^*

INCLUDE ^SYSLIB (STVAR)

1*

//GO.SYSIN^DD^*

STVAR OPEN LOOP TEST 03
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0.0 1.0 0.0

0.0 -1.0 2.0

0.0 0.0 -3.0

0.0 0.0 5.0

0.0 1.0 0.0

1.0 0.0 0.0

(blank card)

(blank card)
1*

The first blank card is a null matrix 0 (1 x 3)

that indicates the end of open-loop calculations while the

s becorid"blbnk" crd indicates the end of the problem. From

the results shown in Fig. 3-23,

X2 -(s) los 10
U =sT s (s + l) (s +3) (s+l)(s+3)

and

Y(s) 10
U s'(s'+ 1) (s +'3)

(2) Analysis Test

To illustrate the analysis computations, the

feedforward gain K - 1and the feedback coefficients k1 1,

k - 0.6 and k = 0 were assumed. Again the computer card2 3

deck is given below.
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STT 
. 
VARIARLE r'ECBACK

PNO!4LEI IDNTIFICATION - STVAP OPF-Ll0P TEST
*eeeeee~eea ge.*q,, ee t a~~meee*e*gh.*w**S

THP A MATRIX

-I .OOGCOJ 00
C.0 0.0 -3.000OOOF 0

THE S NATR IX

0.0 0.0 5.000000E 00

OPFN-LOOP CALCULAT |CI S

OENOMINATrR COIEFFICIENTS - IN1 ASCEtJOWN4 POWERS OfP S

0.0 3.OOOOOE 00 4.O000000F 00 1.00000001 00

THE ROOTS ARE REAL PART 1J4AGINARY PART
-1.CO00O 00 0.03:000000 O0 0.0
C.0 0.0

THE C MATRIX *'e.

0.0 L.O000000o 00 0.0

0NI0ERATOR CCEFFICI1rTS - Ih ISCENOING PCWERS OF S * -.

.. 0 . • . S. 0 0 0 0 0 0 1 " I

THE ROOTS ARE RIAL PAPT IMAGINARY PART
C.O 0.0

THE C PAT IX **S0S

1.0000000 00 0.0 0.0

4tp4EAT COEFFICIENTS - ZR ASCENO1G POWERS OF S

1.QOOOOOE 01

Figure 3-23 State Variable Feedback - Open-Loop Test
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// (standard OS JOB card)

//^EXEC.LINCON

//LINK.SYSIN^DD^*

INCLUDE SYSLIB(STVAR)

/*

//GO.SYSIN DD *

STVAR ANALYSIS TEST 03

0.0 1.0 0.0

0.0 -1.0 2.0

0.0 0.0 -3.0

0.0 0.0 5.0

1.0 0.0 0.0

(blank card)

A

1.0

1.0 0.6 0.0

(blank card)

/*

Interpretation of the output reproduced in

Fig 3-24 gives

10 + 6sHeq(S) 10 1 + .6s

and shows that the closed-loop poles are at -2 and -1 ± j2.

(3) Closed-Loop Test

Here the subprogram is used for design.

Suppose that the feedforward gain and the feedback coefficient
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STATE VARlAhLE FEFL16ACK

PRnSLEM IDENTIFICAT ION - STVAP ANALYSIS TFST

THE A MATRIX

0.0 1.CC0OOOOE 00 0.0
0.0 -1.o0CCCT 00. 2.0000000f 00
0.0 0i.0 -3:00000 Of 00

TH4E 8 M4ATRIX

0.0 0.0 5.0000000E 00

OPFN-LOCP CALCULATIONS
DLKIMINATOR COEFFICIENTS - INd ASCENDING POWERS OF S

003.tJCOCOOCE 00 4.OOOOOOOF 00 1.CoOOOoE 00

THE ROOTS ARE PffA 0PT 00 JAG!NARY PART

0.0 0.0

THE C MATRIX ..

1.0000000E 00 0.0 0.0

NUMERATOR COEFFICIENTS - th ASCENDING~ POJWERS OF S
1.0000000E 01

CLOSED-LUOP CALCULATIONS

REV 2 A "~WOO

THE NUMERATCIP JF b-ECUtVALENT - III ASCFPICING POWERS OF S

1.0000000E 01 5.q955q0e 00 01.0

THE ROOTS AI4E REAL PART IMAGINARY PART
-1.06666 OE 00 0.0

THE FEEOdACK COEFFICIFNTS

1.OU000)E 00 5.C,99A58E-01 0.0

TNE GAIN a 1.OOOOO0uE 0la

THE CLnSEO-LOJP C&4RACTEIS11C PrLYNOMtAL - IN ASCEN01~4G POWERS OF S

I.0O0uuo0E 01 d.1,9siSSOE 00 .0000000OE 00 L.OOOOOOOE 00

THE ROO1TS ARE AFAL PART IMACINARY- PART
I .C COOOOOE. 00 _2 .0000003F 00
I :00OO000C 00 2.oo00oooE 00

-2.OOOOOOOE 00 
0.0

MAXIMUMH P4)MALIZEO ERROR a L.0oAF-0?

Figure 3-24 State Variable Feedback -Analysis Test
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values are to be obtained so the closed-loop characteristic

polynomial is s3 + 4s2 + 9s+ 10 or, equivalently, the closed-

loop poles are located at -2 and -1 ± j2. For illustration,

calculations are requested for both the P and the F forms

(even though they are exactly the same). The control cards

and data deck are then:

// (standard OS JOB card)

//^EXEC^LINCOF

//LINK.SYSIN^DD^*

INCLUDE^SYSLIB(STVAR)

/*

//GO.SYSINDD^*

M " " CLOSED LOOP TEST 03

0.0 1.0 0.0

0.0 -1.0 2.0

0.0 0.0 -3.0

0.0 0.0 5.0

1.0 0.0 0.0

(blank card)

F

1.0 2.0

2.0

P

10.0 9.0 4.0 1.0

(blank card)

*
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As expected, the results shown in Fig 3-25

specify a gain of one and feedback coefficients values of

k1 = 1.0, k2 = 0.6 and k3 = 0.0.

Note that all the above calculations could

have been executed as a single run using the following card

deck:

// (standard OS JOB card)

/^EXEC LINCON

//LINK.SYSIN^DD^*

^ INCLUDE SYSLIB(STVAR)

1*

//GO.SYSIN^DD^*

STVAR TEST 03

0.0 1.0 0.0

0.0 -1.0 2.0

0.0 0.0 -3.0

0.0 0.0 5.0

0.0 1.0 0.0

1.0 0.0 0.0

(blank card)

F

2.0

1.0 2.0

A

1.0

1.0 0.6 0.0

(blank card)

*
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SITF VARIAbLE FEEChACL

PROO6LEN IDE'ATIFICA71CN - CLOSFO-LOOP TEST

ThE A MATRIX

0.0 1t.OOOOO~cj 00 0.0OOOF0
0.3 %).o -3.00030OO 00

T04E b PATO IX

0.0 0.0 9.OOOOOOOE 00

OPEN-LOQP CALCULAT tISI

DENONINATOR COEFFICIEWTS - IN ASrENOING POWERS OF S

0.0 3.UOOOOUjUE 00 14.oOOOOE 00 1.0000000E 00
1141 ROOTS ARE REAL PART IMAGINARY PART

-1.0cj0O00E 00 0.0
-30000O0OE 00 0.0
0.0 0.0

THF C ATR I X

1.00000001 00 0.0 0.0

.4U4EATCR COEFFICIEN75 - IN ISCINOING POW4ERS OF S

1.0030000E 01

CLOS66%-LflJP CALCULATIOnS

KEY a F
THE N!JNERATnP OF I-EQUIVALENT - 1'4 ASCENDING POWERS OF S

1.OOOU0O. 01 6.0000009E t00 0.0

THE ROOTS APE PEAL P4R? IMIAGINARY PART
-1.6E6660!O 00 0.0

T"E FEECRALK COEFFICIEN7S

1.0040000E 00 &.OCOCCC2E-01 0.0

THE GAIN - 9.9999)SBE-OL

7"E CLOSEO-LOOP CHARACTERIMTC PCLYW%3MIAL - IN ASCENOL4G POWERS OF S
9.999996.IE 00 8.999992E 00 4.0C3O0OF 00 1.0000000! 00

THE ROOTS ARE PEAL PART IM4AGINARY PART

-1.0C00O011: 00 -1 999999OF 00~1.0000000E 0f) :9999990E 00
-2.0tOcor 00 0

MAXIMUMf WORUALIZEO ERRCP - 3.IRE-07

KEY . P ***

THE N'UMERATnk OF .1-EOIIIVAL1F4T - IN4 ASCENDING POWERS Of S

1.0003004E 01 *.000001SE 00 0.0

IMF PCOTS ArE REAL PADP IMAG14ARY PAR?
-1.66660E 00 0.0

THE FEF03ACK COEFFICIENTS

1.OOCOOOOF 00 6.OOiJOOZ2E-01 0.0

TIE GAIN a 9.9991956E-01

IMF CLOSED-LOOP CHARACTERISTIC P'.LyNO14tAL -. IN ASCENIPING POWERS OF S
4.9999962F 00 8.9999562E 00 4.0CO0000F 00 190000000E 00

THE ROOTS APE PEIL PIP? ImAf"INARY PART

:0 :8880 0009999F0
MAASNUN NORMLIZED ERROR - 3.LKE-OT

Figure 3-25 State Variable Feedback -Closed-Loop Test
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(4) Step Procedure

The procedure demonstrated through this

simple example applies for all problems. The steps to be

taken can be summarized as follows:

(a) Obtain the state variable representa-

tion of the system.

(b) get A, bT, and c.

(c) If necessary, define ficticious cf

matrices to compute "internal" transfer functions.

(d) For analysis, select the feedforward

gain K and the feedback coefficients ki, k2, ..., kn -

(e) For design, select the desired closed-

loop characteristic polynomial or poles to be achieved.

5. Luenberger Observers (LUEN)

The subprogram LUEN is used to design a combined

observer-controller to achieve a desired closed-loop transfer

function when some of the states are not accessible. The

following paragraphs present a detailed description of the

computer aided design procedure. However the theory of

Luenberger Observers in the design of linear, time-invariant

feedback control is not included in the discussion. Users

who are not familiar with the subject should consult refer-

ences 4 and 7, or any other relevant textbook before working

with this subprogram.

The solution plan is to start from the state variable

representation of a linear time-invariant system and recon-

struct the missing states using an observer. Then, using
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both measured and estimated states, assign the feedback

coefficients and gains required to properly control the

system. The block diagram presented in Fig 3-26 best shows

what is meant. The plant represented by the state variable

equations

x(t) = A x(t) + b u(t)

y(t) = C x(t)

must be controllable and observable. Notice that the C

matrix indicates which state variables are measured. For

example, a fourth order system with only the states x2

and x3 being accessible would yield

c = 1 0 J~ 0 1 0

The real output to be controlled, denoted by yc (t), may

either be one of the state variables or a linear combination

of several of them. The user is to define a desired closed-

loop transfer function and find what feedback gains would

normally have to be used to obtain it, assuming all states

were available. This is done using the subprogram STVAR

as explained later in the design procedure.

The subprogram LUEN is then used to calculate all

the elements necessary to construct the observer and the
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Fig 3-26 Luenberger Observer Block Diagram
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II

controller. The designer only has to specify, in an arbi-

trary manner, the observer eigenvalues and the necessary

feedback coefficients previously found by the use of STVAR.

The computer solution gives all the matrices and gains

required. Brought together these form the following compen-

sated system:

x(t) = A x(t) + b u(t)

X(t) = F x(t) + G1 y(t) +G u(t)

u(t) = KEr(t) - gTy(t) - h Tx(t)

y(t) = C x(t)

where

x(t) = state vector

u(t) = input to the plant

y(t) = output vector

r(t) = system forcing input

A

x(t) = estimated state vector

A = plant matrix (N x N)

B = distribution matrix (N x 1)
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F = observer eigenvalue matrix

= observer gain matrices

K = controller gain

T
g = output feedback coefficient matrix

hT  = observer feedback coefficient matrix

C = output matrix.

All these elements except for K, which comes from STVAR

results, are given as output of the subprogram LUEN. The

four ecuations defining the compensated system can be easily

rearranged, as demonstrated in the example which follows,

to simulate the system by the use of the subprogram GTRESP.

a. Design Procedure

The step-by-step design procedure presented here

contains the essential information to use the program. It

also summarizes the Luenberger Observers design concepts.

Step 1

The closed-loop transfer function Y (s)/R(s) to be achievedc

must be selected and, assuming all states to be measured, we

solve for the controller gain K and the feedback coefficients

k1 , k2, ..., kn . This is done using the state variable

feedback subprogram STVAR, which also checks for system

controllability. It must be kept in mind that the c matrix

for STVAR is the matrix associated with the real output yc (t).
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Step 2

If an acceptable solution resulted from STVAR, the observa-

bility index must next be determined. This can be done by

the use of the subprogram OBSERV, or by hand, using

G = [C T ATCT  (AT ) 2CT ... (AT ) r-ICT]

where the observability index r is the minimum integer such

that the matrix G has rank r. If (A,C) is found to be

observable, an observer whose order is equal to or greater

than (r-l) can be designed.

Step 3

The eigenvalues of the observer are selected arbitrarily.

However, to ensure a unique solution will exist, it is

necessary to let the eigenvalues of F be different from those

of A. The eigenvalues of A were previously calculated by

STVAR so it should be very easy to choose some appropriate

roots for the observer.

Step 4

Using the input format for LUEN, the data are entered and the

subprogram executed. The following system is the final

result:

(t)= A x(t) + b u(t)

y(t) = C x(t)
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*(t) = F x(t) + G1 y(t) + G2 u(t)

u (t) -(r (t) ygt) - h x(t))

Step 5

If desired, the above equations are rearranged using simple,

although sometimes laborious, matrix manipulation as

= A + b r(t)

(t) =tc

Note that the above augmented system order is equal to the

order of the plant, N, plus the order of the observer. The

complete system is finally simulated by the use of GTRESP

letting kT equal zero and K equal to unity.

b. Input

As usual the data deck begins with the problem

identification card on which the order of the plant, N, the

number of measurements M and the order of the observer, (r-l)

or greater, also appears. Next, the plant matrix A (N x N),

the distribution vector bT (1 x N) and the measured states

matrix C (Mx N) are given one row at a time. The feedback

coefficient matrix kT is then entered exactly as given by
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the state variable feedback subprogram (STVAR) output.

Finally, the observer eigenvalues, which are different from

those of the plant, are supplied either in the form of a

characteristic polynomial, option P, or as the roots of that

polynomial, option F. The option is specified in column one

of the first card by writing the letter P or the letter F.

If option P is selected, the characteristic polynomial coeffi-

cients are given in the usual ascending order fashion, with

the highest order coefficient always set equal to 1.0. For

example, if the characteristic polynomial of a third order

observer is chosen to be 16+ 4s+ 5s2+s 3 the last two data

deck cards would then be:

P

16.0 4.0 5.0 1.0

On the other hand, if the roots are to be entered as such,

the letter F is written on the option card followed by the

observer eigenvalues presented in the usual manner. For

example, if the observer poles are -2, -2, -l+j, -1-j the

cards would then be

F

2.0

2.0

1.0 1.0

Note the sign inversion and the fact that only the complex

root with the positive imaginary part is entered.

The following input format table summarizes

the above.
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Entry Input Description Format Columns Used

1 Problem identification, 5A4, 1-20, 21-22,
order of the plant N < 10, 312 23-24, 25-26
dimension of the output
vector M, order of the
observer L (r-1)

2 Plant matrix 4 (Nx N) (one 8F10.3 1-10, 11-20,
row per card for N < 8; 21-30, etc.
one row per two cards for
N > 8)

3 Distribution matrix bT (Ix N) 8FIO.3 1-10, 11-20,
(one card if N < 8; two 21-30, etc.
cards if N > 8)

4 Measurement matrix C (Mx N) 8F10.3 1-10, 11-20,
(one row per card for 21-30, etc.
N < 8; one row per two cards
for N > 8)

5 Feedback coefficient matrix 8F10.3 1-10, 11-20,
(1 x N) (on one card if 21-30, etc.

N < 8; two cards if N > 8)

6 Letter F (if observer eigen- Al 1
values are to be entered as
roots) or letter P (if
observer eigenvalues are to
be supplied by giving a
characteristic polynomial)

7 Entered the observer eigen- 8F10.3 1-10, 11-20,
values as specified on the 21-30, etc.
previous card. (If option F,
enter the roots real and
imaginary parts; if option P,
give the characteristic
polynomial coefficients
in ascending order).

Table XIV - Input Format Table for LUEN

c. Output

The problem identification followed by the A, bT

and C matrices, the desired feedback coefficients and the
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observer eigenvalues, both in factored and unfactored form,

are presented for reference. The observer and controller

elements are printed next as the F matrix, the G1 matrix,

Tthe G2 matrix, the output feedback coefficients g and the

compensator feedback coefficients h

The complete solution of a problem should also

include the results from the subprograms STVAR, OBSERV and,

if a simulation is performed, GTRESP.

d. Example

The example presented by Eveleigh (6] pp. 357-360

was slightly rearranged and the state variables x3 and x4

were assumed to be inaccessible. The signal flow graph for

the uncompensated system is then:

10

i/s 1 i/s 1 1/s 1 I/s 20

-9-

-15

U

Fig 3-27 Uncompensated System for LUEN Test

where yc is the controlled output and x1 (t) and x2 (t)

are the measured states.
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From the diagram, the system matrices are:

1 0 0

0 0 1 0
A
~ 0 0 0 1

O -15 -23 -9

bT [0 o 0 1]

c = [20 10 0 0]

The solution presented next utilizes the design procedure of

part a.

Step 1

The closed-loop transfer function to be achieved is chosen

to be:

yc(s)1

Rs) s 4 + 6s 3 + 17s 2 + 28s'+ 20

1
(s+ 2) (s + 2) (s + 1 + j2) (s + 1- j2)

The controller gain K and the feedback coefficients required

are found by the use of the subprogram STVAR for which the

control cards and data deck are:
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STATE VARIAOLE fEFCSACK

PROBLEM IDENTIFICATION - STVAR FOR LUEN TEST

THE A MATRIX

0.0 1.0OOOOOOE 00 
0 * E0.0

oi ~oooeo :ooooool 01 ok88SSo80.0 0. O80000 0 .
0. 10000000 s

0.0 -0I,5000OO00E Ot 2,3OOOO O -,000000(3.

THE 9 MATRIX

0.0 0.0 0.0 1.0000000E 00
q~s~elee~e~eeoeete*os ***.*~**e* *.**

PEN--LOOP CALCULATIONS

OENOMINATOR COEFFICIENTS - IN ASCENOING POWERS OF S

0.0 1.S0OOOCE O 2.360000F 01 9.0000000E 00 1.0000000E 00

THE ROOTS ARE !ct PART WAGINTARY PART-3.acooo0o05 o ;o
-4.999qqqOF so 0.0
-9qgqqqq94E-O1 0.0
0.0 0.0

THE C MATRIX ***

Z.OOOOOOE O 1.0000000E 01 0.0 0.0

NUMERATOR COEFFICIENTS - IS ASCENOING POWERS OF S

2.O000000E OL 1.O000000E 01

THE ROOTS ARE 0EA 0 PAPT IMAGINARY PART
-2 GOc00OO= 00 0.0

CLOSEO-LOIP CALCULAT1CN$

KEY - F

THE NUMERATOR OF P-EGUN ALWNT - 14 aSCENOING POWERS OF S

2.0000000E 01 1300CCCO 01 -6.0000000E 00 -3.00000OOE 00

Ti.E ROOTS ARE REAL PART IMAGINARY PART
-LG 3 96 2 3 3S 00 0.0
3.20626936 00 O.0

*THE FEEDBACK COEFFICIENTS

2.O000000 01 1.3000000E O -6.000OO00F 00 -3.0000000a 00

TUE GAIN - .0000(00E 00

THE CLOSE)-LOOP CHARACTERISTIC PILYOMIAL - IN ASCFNOING POWERS OF S

Z.OOOOOOOE 01 2.OOCCOOe 01 1.7000000E 01 6.OOOOOOOE 00 1.0000000E 00

THE ROOTS ARE PEAL PART MAGI-NARY PART
-. 0000000E 00 -2OOOOOOOE 00
-1.o3O o5 o 2.o00000E 00
-2.0004 45F 0 0.0
-199951S55E 00 0.0

MAXIMUM NJRMALIgEO ERROR w C.0

Figure 3-28 STVAR Results for LUEN Test
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// (standard OS JOB card)

* . .. //^EXECLINCON

//LINK.SYSIN^DD^*

^^INCLUDESYSLIB(STVAR)

1*

//GO.SYSIN^DD^*

STVAR FOR LUEN TEST 04

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

0.0 -15.0 -23.0 -9.0

0.0 0.0 0.0 1.0

20.0 10.0 0.0 0.0

(blank card)

F

2.0

2.0

1.0 2.0

(blank card)

/*

Results shown in Fig. 3-28 indicate that the system is com-

pletely controllable, the plant eigenvalues are -3, -5, -1,

and 0, the feedback coefficients are 20, 13, -6 and -3 and

the controller gain K equals unity.

Step 2

The observability index is determined using the subprogram

OBSERV. The computer cards are as follows:
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// (standard OS JOB card)

//_EXECLINCON

//LINK. SYSIN^DD^*

^INCLUDE ̂ SYSLIB (OBSERV)

/*

//GO.SYSIN^DD^*

LUEN TEST 0402

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

0.0 -15.0 -23.0 -9.0

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

Step 3

An observability index r = 3 (results taken from OBSERV

output, Fig 3-29) permits us to design an observer of order

equal to or greater than (r-l) = 2. Here a reduced-order

observer is being designed and eigenvalues of -3.5 and -4.0

were selected for the observer. Note that, as required,

there are no common eigenvalues for the plant and the

observer.
i Step4

The data for the subprogram LUEN are:

system order: 04

number of measurements: 02

order of the observer: 02
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1 0 0

= 0 1 0 ....ant I

A =plant matrix
~ 0 0 0 1

0 -15 -23 -9

bT = [0 0 0 1], distribution matrix

C =state measurement
~1 0 matrix

k = [20 13 -6 -3] , desired feedback
coefficients
(from STVAR)

observer eigenvalues: -3.5, -4.0

The following set of cards is then:

// (standard OS JOB card)

//^EXEC^LINCON

//LINK.SYSIN^DD^*

^^INCLUDE^SYSLIB(LUEN)

/*

//GO.SYSIN^DD.*

LUEN TEST 040202

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

0.0 -15.0 -23.0 -9.0
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0 0

0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0

0 0 1.0 0.0 0.0

20.0 13.0 -6.0 -3.0

F

3.5

4.0

/*

From the results shown in Fig 3-30, the complete system can

be described as:

0 0 1 0 x2 (t) 0

t + u(t)
0 0 0 1 x3 (t) 0

O -15 -23 -9 N (t)-

At ~ 7.5 xf x3(tJX(t) -- 114 0 x 4 (t

+ 5921 [ + [3. u(t)

u(t) = [1.0]r(t) - [20 8.5] I(t

- (1.0 0.0] 3

1X534 (I
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, CLI% SE FO UEN TFS. - -

THE1 A MATRIX

001.00OCOOOE 00 0.0 0.0
0.0 :,0000000E 00 So og

0.0 0.0S
0.

OBSERVABIL ITY INDEX 3

Figure 3-29 OBSERV for LUEN Test

LUENSEOI OSEYE01IN ARA
paceL EN 1 OETIF ICATI igt4" LUEN lEsT

11.1 A MATRIX
0.0 10000000E 00 0.00.

0.0 8:8 :o0o 00 :0O0E 0
0.0:8000E18000F0

0.0 -1.50000001 01 -2.3000000E 01 -9.00000O01 00

T14E 0 MATRIX

0.0 0.0 0.0 1.0000000f 00

T14E C MATRIX

1.OOO0O0OE 00 0.0000.
0.:0 j.O00O0000 00 00 000

D ESIRED FEEDBACK CCEFFICIENTS

2.00000001 01 1.3CUOOOOI 01 -0.00000001 00 -3.O0000001 00

OBSERVER El GINVALUES PSPR
RE6AL PAT PC AR

:3.5000000E 00 0.0
4:000~000E 00 0.0

COEFFICIENtS OF G0SNVEPSCHARACTERISTIC POLYNOMIAL
-IN ASCENOING POU P OFS

1.40000001 01 7.50000001 00 1.00000009- 00

THE F 14ATRIX

-7.5000000E 00 1 .OCOOOOOE 00
-1.s#0000001 01 0.0

THE 01 MATRIX

I 5499E 01 2.924S939E 01
0.0 0.0

THE G2 PATPIX

-2.99911 00
1I.5000010E 00

OUTPUT FEEDBACK COEFFIC IENTS

2.00000001 01 11.30000301 00

COMPENSATOR FEDBACK COEFFICIENTS

1.00000001 00 0.0

Figure 3-30 Luenberger Observer Design -Computer Results
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From these equations a block diagram or a signal flow graph

could be drawn showing the compensated system.

Step 5

The system is simulated by the use of the graphical time

response subprogram (GTRESP) for a unit step input. After

some matrix manipulation, the following augmented system is

obtained:

o 1 0 0 0 0 l(t)

0 0 1 0 0 0 x2 (t)

k(t) 0 0 0 1 0 0 x3 (t)

X(t) -20 -23.5 -23 -9 -1 0 x 4 (t)

145.5 54.75 0 0 -4.5 1 x 3(t)

30 12.75 0 0 -12.5 0 x4 (t)

o

0

0
+ r(t)

1

-3

-1.5

yc(t) = [20 10 0 0 0 0 0] z(t)
IC(t)

kT = 0
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K 1.0

For a step input, r(t) =1.0 and initial condition (01 =0

the initig~1 and. fina1* timts are 0 an-~

respectively, the integration time step is 0.0025, and the

plotting parameter FREQ is 100.

The computer deck for GTRESP is then:

// (standard OS JOB card) ,TIME=2

/1 AEXEC,%LINCONF

//FORT .SYSIN.DD-*

SUBROUTINE RFIND (T, R)

R= 1.0

RETURN

END

//LINK .SYS IN DD .*

INCLUDE SYSLIB (GTRESP)

i/GO. SYSIN DD *

GTRESP FOR LUEN TEST 06

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0

-20.0 -23.5 -23.0 -9.0 -1.0 0.0

145.5 54.75 0.0 0.0 -4.5 1.0

30.0 12.75 0.0 0.0 -12.5 0.0

0.0 0.0 0.0 1.0 -3. -1.5

20. 10. 0.0 0.0 0.0 0.0
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0.0

1.0

0.0

0.0 10.0 0.002 100.

Y

/*

The results are shown in Fig 3-31. The user is reminded

that the observer does supply estimates of the missing

components of the state vector but at the expense of adding

its own poles to the over-all system.

For comparison, a run is also made simulating

the system that would have been obtained if all states were

measured, using the feedback coefficients and controller

gain from STVAR subprogram results. Since the same forcing

input is used, the control cards remain the same and the data

cards are changed to read:

ALL STATES MEASURED 04

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

0.0 -15.0 -23.0 -9.0

0.0 0.0 0.0 1.0

20.0 20.0 0.0 0.0

20.0 13.0 -6.0 -3.0

1.0

(blank card)

0.0 10.0 0.002 100.

Y

*
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- '1

The time response obtained in Fig 3-32 is almost

identical to the one of Fig 3-31, showing that the observer

designed does a very good job.

6. Series Compensator (SERCOM)

This subprogram is used to design optimal linear,

time-invariant control systems with incomplete state measure-

ments. The optimality criterion here is in terms of a

specified closed-loop transfer function to be achieved. The

main idea behind the subprogram is to construct a series

compensator such that the need for feedback from the unmeasured

state variables is eliminated. The way to accomplish this

is presented in [81 and [11 and the theory is not repeated

here. The user should, however, familiarize himself with the

subject before attempting to solve problems by the use of

the subprogram SERCOM.

The following paragraphs outline the computer-aided

design procedure, the inputs required and the expected output.

To illustrate the technique an example problem is worked out

in detail. Notice that the overall procedure differs from

the one presented in [1].

a. Design Procedure

Before the step-by-step design procedure is out-

lined, it is necessary to recall the main equations from [8]

and (1]. First the uncompensated system state equations are

(as for LUFN) of the form

159



. . . . .. .. . . .. . ;,. . .. .. . .. .. . . . ..... . .

I I

I .

rid

Y .. .... . ...... ".-...

*l~ ,e e e e ee e 8 8 ~ e e e l e ~ e~ 8.e ee

I l8ll~ l 8ll l~ l 8l~ l~ l I I l Il 8lI~ l

. . .. . . .. . . .

ze

0

'.88, I -I

8 I 88
8 8Iel 8iI ii~ 41 e ~ I I e I e I

I  
e ~ i ~ i

.. .. .. . . . . . .. ..

160



x(t) = A x(t) + B u(t)

C) C

y t) = C x (t)

where

YCt) = output variable to be controlled (could
be one of the measured states or a
linear combination of them)

c = output variable vector

y(t) vector of measured components of
state vector

C = state measurement matrix

An arbitrary dynamic controller

z(t) = D z(t) + e w(t)

u(t) = fTz(t)

is added to the above system. It is to be noted that z(t)

are defined as

z Tt) = [u(t) u(t) u(t) ... u M - 1) ()

w(t) = u(k) (t)
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T
f = (1 0 0 0]

e0 0

0

1

and

DT  = 1 0 0. O

o 0 1 . . 0

0 0 0 ... 1

0 0 0 ... 0

The complete system then takes the form

x(t) = A x(t) + b u(t)

z(t) = D z(t) + e w(t)

w(t) = fTz(t)

w(t) = K[r(t) - k Tx(t) - k2 Tz(t)]

The block diagram representation is shown in Figure 3-33A.
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+ 
X

+T

Fig 3-33A Serially Compensated System
with Complete State Measurements
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It is clear that this closed-loop system does not solve the

problem since it uses all the state variables. It is possible,

however, starting from this system, to eliminate the feedback

from the unmeasured state variables and this is the purpose

of the subprogram SERCOM. Thus, given the above control

system, the computer program accomplishes the necessary

transformations and outputs the new closed-loop system

x(t) = A x(t) + b u(t)

y(t) = C x(t)

v(t) = D v(t) + G y(t) + Ker(t)

u(t) = fTv(t) + gTy(t)

(or in block diagram form, as in Figure 3-33B),

with

A = plant matrix

b = distribution vector

D = compensator matrix

G = major loop feedback coefficient matrix

e = input vector

K = input gain (a scalar)

fT = compensator output matrix

T
g = minor loop feedback coefficient matrix
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u (t) yxt

Fig 3-33B Serially Compensated System with

Incomplete State Measurements
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From theory, such a linear compensator can be designed pro-

vided the order of the controller is at least (r-l), where

r is the observability index of (A,C) [8].

To summarize the above expos6 and give a practi-

cal means of using the method, a step-by-step design proce-

dure is presented. After the theory of the series compensa-

tor method has been assimilated, it should be sufficient to

just follow these few steps and look at the input format table

for SERCOM to solve any given problem.

Step 1

The subprogram OBSERV is used to find the observability index

r of (A,C). If the system is observable, the minimum order

for the compensator is then established as (r-l).

Step 2

The D, fT and eT matrices are selected such that their

dimensions are

D: (r-l) x (r-l)

e T lX (r-l)

fT: x (r-l)

It is to be remembered that

fT = [i 0 0 ... 0 01
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Te = C 0 0 0 1]

1 0 ... 0 0"

0 0 1 ... 0 0

D ................

0 0 0 ... 0 1

0 0 0 ... 0 0

For instance, for a compensator of order one,

Tf =1

T = 1
e

D= 0

while for a compensator order equal to two,

Tf = [1 0]

T
e = [0 1]

The augmented system is then written as
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=~~~ ~ j[: 0u(t)

1

This form complies with the format necessary to use the

subprogram STVAR of step 3.

Step 3
Y (S)

A desired closed-loop transfer function R(s) is specified

for the augmented system. The order of the combined system

is (n +r -1). For example, suppose that a third order system

is to be serially compensated. Its observability index,

found using OBSERV, is r = 2. Then a fourth order polynomial

must be chosen to characterize the desired closed-loop

behavior.

At this point, all states are assumed to be

available for measurement and the subprogram STVAR is used to

obtain the controller gain K and the feedback coefficient

T T Tmatrix kl and k2 . It is recalled that k contains the
T

plant feedback coefficients while k2 contains those for the

compensator.

Step 4

The compensating elements for the augmented system are com-

puted and the required matrix transformations accomplished by

the use of the subprogram SERCOM. The final system takes

the form
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x(t) = A x(t) + b u(t)

v(t) = 5 v(t) + G y(t) + Ker(t)

u(t) = f Tv(t) + g Ty(t)

y(t) = C x(t)

where all elements are given in the output of SERCOM.

Step 5

If desired, the compensated system is simulated using GTRESP.

As for Luenberger Observers, some simple matrix manipulations

are required to put the equations into the form

PC(t)1

(t) =)

u(t) = r(t)

T
k = 0

gain = K
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x(t 0 ) 0

The graphical time response subprogram with appropriate

time specifications is then run.

b. Input

The data deck includes all the parameters defined

for the augmented system. To avoid any mistake, the user

should refer to the design procedure for comparison. The

input data cards start as usual with the problem identifica-

tion, the order of the plant N, the number of measurements

M and the compensator order (r-l) or greater. The complete

system matrices are then presented, one row at a time, in

the following order: A (N x N), bT (lx N), C (M X N),

D[(r-1) x (r-l), eT (lx (r-l)I and fT [lx (r-l)]. On the final

cards, the feedback coefficient matrices k1T and k2T and the

controller gain K are presented. For a zero steady-state

error to a step input, these would be entered exactly as

they appeared on the subprogram STVAR output. The following

input format table summarizes the entries required for SERCOM.

Entry Input Description Format Columns Used

1 Problem identification 5A4 1-20, 21-22,
order of the plant (N < 10), 312 23-24, 25-26
number of measurements-- M,
compensator dimension = (r-l)
or greater

2 Plant matrix A (N xN) (one 8F10.3 1-10, 11-20,
row per card for N < 8; 21-30, etc.
one row per two cards for
N > 8)
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Entry Input Description Format Columns Used

3 Distribution vector bT (Lx N) 8F10.3 1-10, 11-20,
(one card if N < 8; two 21-30, etc.
cards if N > 8)

4 State measurement matrix 8F10.3 1-10, 11-20,
C (M xN) (one row per card 21-30, etc.
for N < 8; one row per two
cards for N > 8)

5 Compensator Matrix 8F10.3 1-10, 11-20,
p[(r-l) x (r-1)] (one row 21-30, etc.
per card for (r-1) < 8; one
row cards per two cards for
(r-1) > 8)

T
6 Input matrix e (1x (r-1)) 8F10.3 1-10, 11-20,

(one card for (r-l) < 8; 21-30, etc.
two cards for (r-l) 7 8)
Compensator output matrix 8F10.3 1-10, 11-20,
T 1x (r-l)] (one card 21-30, etc.

if (r-l) < 8; two cards
if (r-l) > 8)

8 Feedback coefficients matrix 8F10.3 1-10, 11-20,
Ek T k2 T] (1 x N+r-l) (one 21-30, etc.
card it (N+r-1) < 8; two
cards if 8 < (N+i-l) < 16;
three cards-if (N+r-lT > 16)

9 Controller gain K 8F10.3 1-10

Table XV - Input Format Table for SERCOM

c. Output

First the information given as input is listed,

i.e., the problem identification, the A, b 
T , C, D, e T , fT

and [kT k2T ] matrices and the controller gain K. Next the

final compensator system matrix D[(r-l) x (r-l)] is printed

(the user must be careful not to confuse this matrix with the

original augmented system matrix D), followed by the minor
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I,

T
feedback coefficient matrix g (lx M) and the major loop

feedback coefficient matrix [(r-l) x M).

d. Examples

Two design examples are worked out. The first

one is a simple second order system with only one measured

state variable. The other is the fourth order system that

was used to demonstrate Luenberger Observers in the previous

section.

(I) Example One

A design of a feedback system is required

such that the following controllable dynamical equation

[(t) 1 xl(t
= +1 u(t)

2(t) r -i1 2(t) +1

y(t) = [1 01 x(t)

has a time response to a step input approximately the same

as for a second order system with poles at -1 ± j.

Step 1.1

The observability index for the system can easily be found,

by hand or by the use of the subprogram OBSERV, to be r - 2.

Thus a first order compensator is sufficient.

Step 1.2

The D, fT and eT matrices are selected such that:
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D = 0

e =1

fTfT = 1

and the augmented system takes the form

= + El u(t)

Step 1.3

The degree of the characteristic polynomial is then three.

Since the desired response was specified to be similar to a

second order system with closed-loop poles at -1 + j and -1 -j,

it seems appropriate to select these roots plus a third real

root with a large negative value. The subprogram STVAR is

then used to calculate the required feedback coefficients and

the gain for roots at -10, -1+ J, -1- j. The computer deck

for STVAR is

// (standard OS JOB card)

//^EXEC ̂ LINCON

//LINK. SYSMIN^DD^*

^^INCLUDE^SYSLIB (STVAR)

//GO. SYSIN^DD^ *
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STVAR FOR SERCOMI 03

0.0 1.0 0.0

0.0 -1.0 0.0

0.0 0.0 0.0

0.0 0.0 1.0

1.0 0.0 0.0

(blank card)

F

10.

1. 1.

(blank card)
/*

The results are shown in Fig. 3-34.

Step 1.4

Sufficient information is now available to run the subprogram

SERCOM. We put together the data:

order of the plant = 02

number of measured states = 01

compensator order = 01

plant matrix A = r ii

distribution vector bT =[0 1

state measurement matrix C = [1 0]

compensator matrix D = 0

input matrix eT = 1

compensator output matrix fT =1
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STATe VARIABLF FEECd3AC1K

PRLARLE1 IDENTIFICAIION - STVAR FOR SERC014 I

0.0 .CocaCCE 00 0
(10- . 0000O 00 l.00000009 00

TOH6 6 MATRtIA

0.0 0.0 1.00000006 00

0PEPN-Lflp CALCULAT ICI

DENOMINATOR COEFFICIENTS - IN ASCENDING FONEPS OP S

0.0 0.0 1.0OOOOOOP 00 1.0000000E 00

T14E ROOTS ARE P EA40PART IMAGINARY PART
-1. CG OOOE 00 0.0

Q 0 0.0
C.G 0.0

THE C MATRIX *e*00

I.COOOOOOE 00 0.0 0.0

NuMEALTCIR CCEFFICIE14TS - IN. ASCENDING PCWEPS OF S

1.00U00304E 00

CLOSE0-LJOP (ALLULAI4S

KbY - F

THF NUwFRATOR OP I4- 013IVAL#IaT 1 N ASCENOIPIG pflwEpS OF S

I.000JOOuE 00 1.099994.E 00 5.499995F-01

THE ROOTS AVE PEAL PAP' IMbnvN4RY PART
-S.C%09t35E-01 0.0

THE FEEGBACK CCIEFFICIEPTS

1.0000~.30je 00 5.,qqqiS55E-O1 S. 49q99q5r:01

THE GAIN - 2.0000000E 01

THE CL(JSED-LC'P CHARACTERtSTIC PnLy'IOMIAL - IN ASCTNDING POWERS OP S

2.O000000je 01 2.aC3C0OOF 01 1.2000000r 01 1.000000 00

THE RUMT APE PEAL PAP? IMIAGINARY PART
-I.000-100n;: 01 n.0
-1.0000030E 00 -1.0009000E 00
-1.COOOOOVE 00 1.0000000E 00

MAXINIJM NORM*ALIZED FPRCR - 6.94E-07

Figure 3-34 STVAR Results for SERCOM Test One
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Ak1T T [2. 0.55 0.55], (from STVAR
output)

K =20 (from STVAR output)

So the control deck and data cards for SERCOM are:

1/(standard OS JOB card)

1/EXEC ^LINCON

I/LINK. SYSIN DD-

-IN'ZLUDE SYSLIB (SERCOM)

//GO .SYSIN,.DD.*

SERCOM TEST ONE 020101

0.0 1.0

0.0 -1.0

0.0 1.0

1.0 0.0

0.0

1.0

1.0

1.0 0.55 0.55

20.0

From the results reproduced in Fig. 3-35, it is easy to

determine the final system as

r~t il[l1 x(t) + [OJ u~t)
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Figure 3-35 Serial Compensator Design -Test One
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1 llv (t) + 10 ly (t) +(2 0) (1) rt

u (t) v v(t) -lly (t)

or, equivalently,

x(t) 2

x2 (t) -1x 1 (t) - x2 (t) + v(t)

= 1011 (t) -llv(t) + 20r(t)

Step 1.5

This last set of equations can be readily used in the subpro-

gramn GTRESP to simulate the system forced by a unit step

input. From the above equations one gets:

[0 1 6

-. 101 0 -11]

T
b [0t 0 20]

c= (1 0 01
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k T 0

K =1.0

x(t) = 0

= 0.0 t f =10.0

dt =0.002 FREQ =100.

We assemble the computer card deck as follows:

II(standard OS JOB card) ,TIME=2

//EXEC,-LINCONF

//FORT. SYS IN,DD

SUBROUTINE RFINDCT, R)

R =1.0

RETURN

END

//LINK .SYSIN,DD,*

.INCLUDEA SYSLIB (GTRESP)

^ENTTRY,^GTRESP

//GO.SYSINDD,~*

GPREsP FOR SERCOMl 03

0.0 1.0 0.0

-11. -1.0 1.0
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101 0.0 -11.

0.0 0.0 20.0

1.0 0.0 0.0

0.0 0.0 0.0

1.0

0.0 0.0 0.0

0.0 10.0 0.002 100.

Y

The time response shown in Fig. 3-36 can be easily compared

with the actual feedback system where both state variables

are available (by the use of STVAR and GTRESP) and a decision

made regarding the suitability of the compensated system.

Here it is important to note that the method

increases the order of the system and adds undesired

poles. For this reason it is always wise to simulate (using

GTRESP). Another good way to investigate the results is to

run the subprogram STVAR in open-loop mode for the same set

of equations as for GTRESP. This gives the designer a double

check on the accuracy of the solution and verifies the con-

trollability. These ideas are demonstrated in the second

example.

(2) Example Two

The same problem presented for the

Luenberger Observer example is used here, this time with a

series compensator. The fourth order uncompensated system
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c(t) "0 1 0 0 x(t) + 0 u(t)

0 0 1 0 0

0 0 0 1 0

o -15 -23 -9

with measurement equation

Y(t) =0 0 O0 X(t)

and controlled output

YC (t) = (20 10 0 0] x(t)

is to be controlled so the overall time response approaches

the one that would result from feeding back the states, if

they were all measured, for a fourth order system with

closed-loop poles at -2, -2, -1+ j2.

Step 2.1

The observability index is found by the use of the subpro-

gram OBSERV to be r = 3. Thus the compensator order must be

at least (r-l) = 2.

Step 2.2

D, fT and eT matrices are selected as follow:

D = 0 ]' eT = (0 1], fT = (1 0]

182



and the augmented system becomes

[~:j 0= 0 6 -t + Cr u(t)0 0 1 0 0 0L iZW 0
0 0 0 1 0 0 0

0 -15 -23 -9 1 0 0

0 0 0 0 0 1 0

o 0 0 0 0 0 1

Yc(t) = [20 10 0 0 0 0] x(t)

z(t)

Step 2.3

Pole placement is usually dictated by some time response

specifications. The desired response given here suggests

that four of the closed-loop poles be located at -2, -2 and

-1 ±j2. The two other roots are undesired and a rule of

thumb is to place them to the left of the desired ones.

Here -3.5 and -4.0 were selected and the subprograms

STVAR run with the following control and data cards:

// (standard OS JOB card)

// ^EXECLINCON

//LINK. SYSIN^DD^ *

INCLUDE^ SYSLIB (STVAR)
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//GO.SYSIN^DD-*

STVAR FOR SERCOM 2 06

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0

0.0 -15. -23.0 -9.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

20. 10. 0.0 0.0 0.0 0.0

(blank card)

F

1. 2.

2.

2.

3.5

4.0

(blank card)

/*

The output shown in Fig. 3-37 gives the gain and

feedback coefficients that would be required if all states

were measured.

Step 2.4

Since some of the states are not measurable, the subprogram

SERCOM is used to transform the original system into the appro-

priate series compensated system. The information necessary

to run the subprogram is:
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order of the plant = 04

number of measured states = 02

compensator order = 02

0 1 0

0 0 1 0
plant matrix A =

~ 0 0 0 1

0 -15 -23 -9

distribution vector bT = [0 0 0 1]

state measurement matrix C = 0 0 oL0 0
0 1 0 0

compensator matrix D = 0 1

0 0

input matrix eT = I]

compensator output matrix fT =[ 01

[k 1 [20. 25.3 8.07 .607 .893 .321],

(from STVAR output)

K = 14. , from STVAR output.

The computer card deck is then

// (standard OS JOB card)

// ^ EXEC^LINCON

//LINK.SYSIN^DD^*

^^INCLUDE^SYSLIB(SERCOM)

/*

//GO.SYSIN^DD^*

SERCOM TEST ONE 040202
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0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

0.0 -15. -23. -9.

0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0

0.0 0.0

0.0 1.0

1.0 0.0

20. 25.321 8.071 .607 .8983 .3214

14.

The computer output (Fig. 3-38) gives the compensated system

x t = 0 1 0 0 x t) + 0 u~t)

0 0 1 0 0

0 0 0 1 0

0O -15 -23 - 9jL

-M [0 oJ8.75 -2.74J yt

+ 14 r(t)
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u(t) [ 0] V(t) + [-54 -8.5] y(t)

y(t) = 0 0 0 x(t)

0 1 0 0

Step 2.5

Again it is relatively straightforward to rearrange the

equations in an augmented system form suitable for simulation

using the subprogram GTRESP. For completeness the result is

given here.

o 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
A1 =

-54. -23.5 -23 -9 1 0

88.75 -20.74 0 0 0 1

0 0 0 0 -12.58 -4.5

Tm

b1T = [0 0 0 0 0 141

gain = 1

c = [20 10 0 0 0 0]

kT = 0

X(to) = 0
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The time specifications are chosen to be

t 0 0 tf 10

dt =0.002 FREQ 100

and the control and data cards for the graphical time response

subprogram with a unit step input are

// (standard OS JOB card),TIME=2

// ,EXEC _LINCONF

//FORT. SYS IN ,DD.*

SUBROUTINE RFIND (T,R)

R =1.0

RETURN

END

//LINK. SYSIN ,DD ,*

.INCLUDE ASYSLIB (GTRESP)

//GO .SYS IN ,DD.*

SERCOM TEST TWO 06

0.0 1.0 0.0 G.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0

-54. -23.5 -23. -9. 1.0 0.0

88.75 -20.74 0.0 0.0 0.0 1.0
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0.0 0.0 0.0 0.0 -12.58 -4.5

0.0 0.0 0.0 0.0 0.0 14.0

20.0 10.

0.0

1.0

0.0

0.0 10. 0.002 100.

Y

/*

Results in Fig. 3-39 are very similar to those

obtained for the Luenberger Observer system. The response

can be compared against the original specifications. If unsat-

isfactory, the designer can redo the problem using different

pole locations. As mentioned at the end of the previous

example, it might be good to find out if any mistake was

made by verifying the location of the closed-loop poles. This

is easily accomplished by running the subprogram STVAR for

open-loop calculations for the above augmented system. The

data deck consists of the problem identification, the system

order, A, b and C matrices and two blank cards. The complete

computer deck is

// (standard OS JOB card)

II EXEC^LINCON

//LINK.SYSIN^DD^*

^^INCLUDE^SYSLIB (STVAR)

I*

//GO.SYSIN ̂ DD^*
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SERCOM TEST 2 06

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0

-54. -23.5 -23. -9.0 1.0 0.0

88.75 -20.74 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 -12.58 -4.5

0.0 0.0 0.0 0.0 0.0 14.0

20. 10.

(blank card)

(blank card)

1*

Note that the gain K is carried inside the bT

matrix as required by the equations representing the final

compensated system. Results presented in Fig. 3-40 show that

the roots are very close to their originally specified

locations.

7. Optimal Control/Kalman Filters (RICATI)

RICATI is a double-precision subprogram used to solve

the Riccati differential equations

(t) - -P(t)A - ATP (t) + P(t) BRIBTp (t) - Q (1)

and/or

F(t) - A(t) + PAT- P(t)CTR -lCF(t) + BQBT  (2)
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to obtain the gain matrix

?G (t) R= R BTP (t) (3)

or/and

G ct) - (CPt) (4)

Equations (1) and (3) pertain to the solution of the

state-regulator problein while (2) and (4) occur in the con-

tinuous Kalman filter algorithm. For convenience a brief

discussion of each subject is included. First the state-

regulator problem: given a linear, time-invariant system

19]

x(t) = A x(t) + B u(t)

y(t) M C x(t)

where u(t) is not constrained, a control law is to be found

such that the quadratic cost function

t

J [ (IXtf)fxctf)1 + I Cx (t)-x M +u (t)Ru(t)dt
to
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is minimized. Such an optimal control exists, provided

that Pf and 0 are positive semidefinite and R is positive

definite, and is given by

u(t) = -R- B TP(t) x(t) G (t) x(t)

where P(t) is the unique solution of the differential Riccati

equation

P(t) - -P(t)A - ATP(t) + P(t)BR- BTP(t) - Q

with the boundary condition P(tf) = Pf ; tf is a specified

value. The RICATI subprogram is used to determine the control

gain matrix

Gc (t) = R-T P(t)

such that the closed-loop system

x(t) = A x(t) + B u(t)

u(t) -G C(t) x(t)

y(t) - C x(t)

is optimal with respect to the specified performance measure.

The computer can solve for either or both the transient and
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2
the steady-state control gains. Notice that the gain matrix

G (t) output by the computer does not include the negative
c

sign of the feedback loop.

For the second type of problem, a continuous Kalman

filter is to be obtained and the subprogram RICATI is used

to find the optimal filter gain matrix for the design. Here

again the user has a choice of getting either or both the

transient and the steady-state gains.3 The problem to be

solved is to find an optimal filter for a linear, time-

invariant system [10]

x(t) - A x(t) + B w(t)

z(t) = C x(t) + v(t)

where v(t), the measurement noise, is uncorrelated and has

covariance matrix Q. The random process forcing input w(t)

2The conditioau sufficient for steady-state control
to exist are that the system be completely controllable, i.e.,
the matrix [B AB ... An-1B] be of rank n where n is the
order of the-pliit, that-no Cerminal cost be considered in the
cost function and that A and B be time-invariant. [9]

3Sufficient conditions for steady-state filter gains to
exist are 10]:

(a) the plant must be completely observable
(b) the plant must be time-invariant, i.e., A, F

and C are independent of time ~
(c) the random processes v(t) and w(t) are stationary,

i.e., R and Q are constant.
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is also uncorrelated and has covariance matrix R. The

expected values of the initial states are

xo = E[x(to)

The solution is obtained by choosing the filter gain matrix

Sfct) - --1-t
?R (t)t

such that the plant, measurement and Kalman filter are

x(t) = A x(t) + B w(t)

z(t) = c x(t) + v(t)

x(t) = A R(t) + Gf(t) [z(t) - C ^c(t)]

These equations are also presented in block diagram form in

Figure 3-41.

The purpose of the subprogram RICATI is to solve the

differential Riccati equation

A(t) F AP(t) + P(t)AT + B-B T  - F(t)cTR-IP(t)

with initial condition
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pT

?(o P0  E[xWt)- x) (x(t)- T

to calculate the filter gain matrix Gf(t).

a. Input

A corjion input format applies to both state-

regulator and Kalman filter problems. However the matrix

definitions differ.

vl(t

Fig 3-41 Continuous Kalman Filter Block Diagram

(1) Basic Input

The input data deck first card contains the

problem identification, the order of the plant (N < 10), the

number of control inputs (M < 10) and the number of measured
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outputs (L < 10). Since these numbers define the dimensions

of each subsequent matrix, extra care is suggested. Next

the plant matrix A (N x N) is entered one row at a time. Simi-T!
larly the control matrix BT (M x N) and the observable output

matrix C (Lx N) are given. The above forms the basic input

and needs only be included once.

(2) Control Option Input

This portion of the data is used when solving

state-regulator problems. The letter C is printed in the

first column of the first card to indicate that option con-

trol is selected. On this same card, if and only if transient

gains are desired, the user gives the initial time to,

the final time tf and the number of time points of the control

gain matrix (NPOINT ) to be printed. If the steady-state

solution only is desired, the letter C still appears in

column one but the rest of the card is left blank.

Next the control weighting matrix R (M x M)

is entered, followed by the state weighting matrix 0 (N x N).

If and only if the transient response of the gains was

requested, by assigning non-zero values to to, tf and n

points, the terminal boundary condition matrix P(tf) (N xN)

is given last.

(3) Filter Option Input

The first card of this portion of the data

deck indicates a Kalman filter problem by the letter F

punched in column one. As for the control option input,

the time interval and number of points of the filter gain
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matzix transient response to be output are also entered on

that first card, if and only if the transient response is

desired. Next, the measurement noise covariance matrix

R (L x L) and the random input covariance matrix () (M x M)

are entered, one row at a time. Finally, if and only if the

transient filter gain solution was requested by assigning

non-zero values to to, tf and NPOINT the initial boundary

condition matrix P(t0) (Nx N) is given.

(4) Problem Termination Card

The user may ask for several different com-

puter solutions of the same basic problem by stacking the

control input cards for transient response and the control

input cards for steady-state solution, or the filter input

cards for steady-state solution and the filter input cards

for transient response. Termination of a given problem is

indicated by a blank card. As usual, many problems can be

executed under the same run by placing the complete data

decks one on top the other.

The following input format table summarizes

the above.

Entry Input Description Format Columns Used

1 Problem identification, 5A4, 1-20,

Basic order of the plant (N < 10) 12, 21-22,
number of control inputs 12, 23-24,
(M < 10),
numSer of measurements 12 25-26
(L < 10).
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Entry Input Description Format Columns Used

2 Plant matrix A (Nx N) (one row 8E10.0 1-10, 11-20,

Basic per card for N < 8; one row 21-30, etc.
per two cards for N > 8)

3 Distribution matrix B (M xN) 8E10.0 1-10, 11-20,

Basic (one row per card for N < 8; 21-30, etc.
one row per two cards foF N > 8)

4 Measurement matrix C (Lx N) 8El0.0 1-10, 11-20,
Basic (one row per card for N < 8; 21-30, etc.

one row per two cards foi N > 8)

5 Letter C, Al, 1,
initial time t0 , F10.3, 11-20,Otol final time t F10.3 21-30,
number of pofnts (NPOINT) 13 31-32-33

6 Control weighting matrix R (Mx M) 8E10.0 1-10, 11-20,

Control (one row per card if M < 9; one 21-30, etc.
Option row per two cards for M> 8)

7 State weighting matrix Q (N xN) 8E10.0 1-10, 11-20,

Control (one row per card for N < 8; 21-30, etc.

Option one row per two cards foF N > 8)

8 Terminal boundary matrix ?(tf) EX0.0 1-10, 11-20,

Iff (Nx N) (one row per card for 21-30, etc.
N < 8; one row per two cards#PO0T foF N > 8)

Control
Option

9 Letter F, Al, 1,
initial time to, F10.3, 11-20,Filter final time t , F10.3, 21-30,

Option number of points NPOINT 13 31-32-33

10 Measurement noise covariance 8E10.0 1-10, 11-20,

Filter matrix R (Lx L) (one row per 21-30, etc.
Option card for L < 8; one row pertwo cards far L > 8)

11 Random input covariance matrix 8E10.0 1-10, 11-20,
Filter 9 (M xM) (one row per card for 21-30, etc.

M < 8; one row per two cardsOption foF M > 8)
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Entry Input Description Format Columns Used

12 Initial boundary value matrix P(t0) 8El0.0 1-10, 11-20,
Iff (N x N) (one row per card for 21-30, etc.
NPOINT N < 8; one row per two cards

NP N fo N > 8)
Filter
Option

13 (blank card) (indicates problem 8E10.0 (blank)
termination)

Table XVI - Input Format Table for RICATI

b. Output

The problem identification and the A, BT and C

matrices are listed for reference. Then the option requested

is indicated and the R, Q and P matrices are printed. Finally,

"steady-state solution" or "transient response" is printed,

followed by the gain matrix Gf or Gc .

c. Examples

Two problems are worked out to illustrate the use

of this subprogram.

(1) Example One

In the first case we assume the plant

(t) = x2 (t)

2 (t) = u(t)

and wish to determine what must the control gains be to

minimize the performance measure
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J =- J [qllXl 2 (t) + q2 2 x 2
2 (t) + Ru2 1t)] dt0

where the weighting factors are qll= 4.0, q22 = 0 and

R - 50. The control option is used. The elements necessary

for the data deck are:

A li BT [0 11

C ( (0 0]

(Note that C is not used in the calculations but must be

included since the input table requires it.)

R = 50. .1
[4=.0 0]

Both the steady-state and transient solution are desired.

For the transient part of the problem, t0 = 0.0, tf = 10.0

and NPOINT = 020 are selected with the initial condition

P(tf) 0.

The control and data cards are then

// (standard OS JOB card)

// EXEC LINCON

//LINK.SYSIN -DD
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^ ̂ INCLUDE ̂ SYSLIB (RICATI)

/*

//GO.SYSINDD^*

RICATI CONTROL TEST 020101

0.0 1.0
0.0 0.0

0.0 1.0

0. .01.0 0.0

C

50.

4.0 0.0

0.0 0.0

C 0.0 100 020

50.

4.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

(blank card)

/*

The solution in Fig. 3-42 shows the requested steady-state

and transient response.

(2) Example Two

The second problem is to find the optimal

Kalman filter gain matrix for the following system:

0 1 0
x(t) = x(t) + w(t)
~ 0 -4.6 0.1
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OPTIMAL.CIOjUt FIlTt PROCPAN
POSBLE IDENTIFICATION - RICATI CONTROL TEST

ThE A MTRIX

THE 8 MATRIX

0.0 1.000000000 00

TO*E C MATRIX

1.DO000O0D0 00 0.0

**CONTRqL. OPTION *

A MA1tRIx 0.*Lsi~~ Jc

S.300000000 01 2. 1itJ0129Sr'-01 6.1341D-01
TOdE a MATRIX TIM10% 1.AOCOO0daD 00

.0000000 6.3 00 39 O0 L0 6.V1921084O00

STEADY STATE SOLUTIOh *. .20COC100 -c0

GA INS 45000 7.261921910-01
1.626426140-01 10S21196010-01,C41@ e.A0C0G130 CO

2.1S 900 1.37C993?7O-01,

CONTROL OPTION CAa Si~ .00010
Z. 13Z021230-01 7.36 5.50400-01

T"F APATRI Jim5#.CCO013aO Go
9*000000000 01ri11.1 31320-01  ?.3:S9O Dj-oI

THdE a MATRIXG1"!as 40005 C

4.000000000 00 0:0 Zl.T4aiL050-01 7. 96SC3890-01
0.0 0.0 T?1 a 4.20000163C 00

INITIAL CONDITIONS CA I -- 107C00

0.0 .0T4 . 3.AO0oOtysc do
0.0 0.0 T1,41 0

eee~e*S~s~e~seaa~ae~e****e2. lb141900 1.439041700-01

TV at 1420C00000 oi TINI 6o 3.00C001880 Co
8!0 0.0 2.80406?100-OA 7.463329320-01
T1141 . 1.146000010 01 TIPE go 2.40000?COO 00

V110201550-02 5.472344400-03 2!4115)44640-0& 7-483850950-01
ayocoo"s I Tit" a. .600002)30 0013;; CI04.4030 C?1U0 GAS N

1:62 6 4430?8Z.SZ02a 6100761-01 1.4991 13900-01
TtI no I.0200000*0 as T10~a .OCOZOC

el1ifQ59300-01. 1.43768AI0-01 2*64910-01 . 3SI17650-0g

0. 9.40C000500 CCOmI600:7Oc

1!934I6*,10-01 1.02$145130-01.8 5200 TOSU&600

7,9*000000630 9o *. *.SjssC8-o.
*.4q5,SO-@ a159S020-1 1.1131o-O1 7.51 "35040-01t

Figure 3-42 Control option Test for RICATI
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The random input w(t) is white noise with variance Q - 10.

The observed variable is given by

Z(t) - [1 0] x(t) + v(t)

where v(t) is also white noise with variance R = 10-7 .

From the above it is easy to extract the data necessary to

solve the problem by the use of RICATI. Writing down the

elements one gets:

- = [ a0 1 B T = r .1 ]

c = 0l 0]

R = 10 - 7

Q = 10

The initial condition matrix P(t0) is chosen to be

The time is specified as being to = 0.0 and tf = 0.5 and a

number of points to be output is NPOINT = 10. The computer

cards to solve both for the transient and steady-state are
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/I (standard OS JOB card)

S/. ^EXEC-LINCON 1
//LINK.SYSIN^DD^*

INCLUDE^SYSLIB(RICATI)

//GO.SYSIN^DD^*

RICATI FILTER TEST 020101

0.0 1.0

0.0 -4.6

0.0 0.1

1.0 0.0

F 0.0 0.5 010

0.0000001

10.

F

0.0000001

10.

1*

Results presented in Fig. 3-43 indicate that the algorithm

used by the computer to find the steady-state gains is not

good enough for the problem. The transient response final

values are used as steady state gains.

8. Discrete Time Kalman Filter (Kalman)

This double-precision subprogram is used to calculate

the discrete Kalman filter gain matrix Gk" The theory of

the discrete Kalman filter can be obtained from many textbooks

and articles and is not reproduced here. For example see [10]

and (11].
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OPTIMSAL CLNFAUL/IALIA' tIltLti PIGP41

PROUSIN tIlNIVICATIC4 - RICATI FILTER TEST

OO~e**** *se"* 00.00000000* *00*00

vMF a MATRIX

0.0 1 .000000000-61.

THE C MATRIX
1.000000000 00 0.0

000 PELTIP OPTION**

THE R MATRIX

1.000000008-0?

TO41 0 MATRIX

1.000000000 01

INITIAL COMOITIONS
0.0 0.0
0.0 0.0

ED 0.0

I 1"I U. 4.99S998960-02

V, iro as 9. 99"9791 0-02
*!G367S9900 01 T.d22J%930 02

GTIM 8, 1.4S9 90-01
3!9.0A695eo a .0801s444 02
TIME u 1.999999540-Cl

~L~I2;.20  2.9999460-01 0

tIW . 2.999999310-Cl
4.!035756700 01 *.1436e2*AD 02

11 0. 3.4999992?C-01
4.0SI430,01 4.143S42210 02

4 3131320 01 . .1435S030 02

rT[S a. .*S999c&D-01
!0313LI2 01 .143S64&b0 02

Ti . A. 96%00-01
!01731300 01"*9 8.14354J606 02

S* FELTER OPTION 000

THE A MATRIX

1.*000000000-0?
THE 0 MATRhIX

106000009 01

Figure 3-43 Filter Option Test for RICATI
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The following block diagram, definitions and equations

are nonetheless included to summarize the ideas and clarify

the notation adopted in this discussion.
-k

-kl -

+A

Fig 3-44 Discrete Kalman Filter Block Diagram

From the diagram, one gets the discrete time system

state equation

and the measurement equation
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z k  - 1 k + Yk

Each element can be briefly defined and the matrix

dimensions noted as:

xk : state vector (N x 1)

S: transition matrix (N x N)

! k : system random input (Lx i)

r : distribution matrix (N x L)

!k :measurement vector (M xl)

H : observation matrix (M x N)

vk : measurement noise (M x 1)

k : gain matrix (N x M)

The problem is to minimize

^ T^Jl = [(xk -Xk 'k)  x - Xl)
1 -k -kk - kjk'

with respect to Gk. Note that J is a scalar.4-k* 1

4 1 actually is the trace of the cost function

J - E[( k - xkl k) (x - xklkf]

where J is a (NxN) matrix.
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The solution to the problem is

Gk =P kk-HT[HP HT + RI- 1  (1)

klk [I - kJ Pklk-1 (2)

Pk+llk= T (3)

where

kjk = xkjk-l + Gkt zk - .! kjk-ll (4)

and

A

-kk-l - k-ljk-l 5

given the initial conditions

0 E[x(O)]

and

!01-1 E"(x - X-o1-i 21

The terms associated with the above equations are

defined as

Pklk (N xN) matrix of the covariance of error ofthe estimate at k given observations at
times up to and including time k.

213



~ Ik-l (NxN) matrix of the covariance of error of
the one-step prediction at k given observationsat times up to and including time (k-i)

R (M x N) covariance matrix of the measurement
~ noise

Q : (N x N) covariance matrix of the random
input

The matrix

= r E(WkwkT) rT

is computed from the parameters rT (Lx N) and E[WkWk ] (L xL).

The purpose of the subprogram KALMAN is to solve the

recurrence relations (1), (2) and (3) for a specified number

of iterations N and print the filter gain matrix Gk as a

function of k.

a. Input

Since many problems are encountered where the

designer must compensate for time-varying environment by

letting the covariance of the observation noise be variable,

it was decided to permit the user to define the R (M x M)

matrix with an external subroutine. The subprogram KALMAN

thus is accessible under Mode Two of operation only. Also

note that the subprogram is double-precision.

The first input to be entered is the covariance

of the observation noise via the double-precision subroutine

RDEF(R,NP,M) performed by the main program where M is the

order of the matrix. The parameters NP and M are directly
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available from the main program and must not be assigned any

value here, i.e., leave them as NP and M. The subroutine

is then

SUBROUTINE RDEF (R,NP,M)

IMBLICIT REAL*8 (A-H, O-Z)

DIMENSION R(20,20)

FORTRAN statements defining

the R matrix (see example part c.)

RETURN

END

Next the data deck is punched. The problem

identification, the order of the system N, the dimension of

the random input vector L and the number of outputs M are

given on the first card and are followed by the 0(N x N) matrix, the

rT (L xN) matrix, the E[WWT ] (L x L) matrix, the H (M xN)

matrix and the initial condition matrix P0 1-1 (N xN) in

accordance with the input format table shown below.

Entry Input Description Format Columns Used

1 Problem identification, order 5A4, 312 1-20, 21-22,
of the system (N < 10), 23-24, 25-26
dimension of the Fandom input
vector (L < 10), number of
measurements (M < 10)

2 t (NxN) matrix (one row per 8E10.0 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

3 rT (LxN) matrix (one row per 8E10.0 1-10, 11-20,
6ard for N < 8; one row per 21-30, etc.
two cards f~r N > 8)

215



Entry Input Description Format Columns Used

4 E[1W T] (L xL) matrix (one row 8E10.0 1-10, 11-20
per card for L < 8; one row 21-30, etc.
per two cards for L > 8)

5 H (MxN) matrix (one row per BE10.0 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

6 Number of time points to be 8E10.0 1-10
performed (NP)

7 P 1  (NxN) matrix (one row 8E10.0 1-10, 11-20,
p ard for N < 8; one row 21-30, etc.
per two cards for N > 8)

Table XVII - Input Format Table for KALMAN

b. Output

The problem identification, the discrete system

T* matrix, the transpose of the gamma matrix, the E[W T ]

matrix (listed as the W matrix on the printout), the measure-

ment matrix H, the initial value of the observation noise

covariance matrix (at NP = 0) and the initial condition matrix

are listed for reference. Then the filter gain matrix is

printed as a function of the time index YC, from k = 0 to

k = NP.

c. Example

It is desired to estimate position and velocity

from noisy position measurements only. The system equations

are

-kl (5 xk] [125)

k + w(k)
2 12 (k
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z(k) = (1 0] '[x(k + v(k)

2 (k)
L2k

where the perturbation acceleration w(k) has a root mean-

square magnitude of 2 meters per second.

From the above information, one can see that

T

rT  [.125 .51

E[ TWW] = mean-square magnitude of the
~~ perturbation acceleration

= 4.

The matrix P0 1-1 is assumed to be

]= 0

0 10]

and the covariance of the observation noise is assumed to be

4 + (-)(NP) for 0 < NP <0
R 2

4 for 10 < NP
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The number of time points to be computed is chosen to be 20

and the following computer card deck is set up:

1/(standard OS JOB card)

1/EXEC LINCONF

//FORT .SYSIN,.DD,.*

SUBROUTINE RDEF (R,NP,M)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION R(20,20)

DO 1 I=1,M

-Do -~1 Ja',M *0 - - 0 ...*. .. I. ..-. I... -. . . .

IF(NP.LE.l0) R(I,J)=4.+(-0.5)**NP

1 IF(NP.GT.l0) R(I,J)=4.

P.ETURN

END

//LINK.SYSINDD*

A,INCLUDE.SYSLIB (KALMAN)

..ENTRY. KALMAN

//GO .SYSINDD,*

KALMAN TEST 020101

1.0 0.5

0.0 1.0

0.125 0.5

4.0

1.0 0.0

10.0 0.0

218



DISCRETE TIME KALMAN FILTER PRCGRAM4

PPCSLEN XOENTIFICATION - KALMAk TFST

TNI PHI1 MATRIX

1.00400O00 G .o I SSSO

11H6 GAMMA IIATRIX

I .250CO0000-O1 5.000000000-01

THE w M4ATRIX

4.00000000C 00

The MI MATRIX

1.00000000C 00 0.0

THE 0 PATAIX

5.0000*3000C 00

INITIhAL CCNOITICKS

1.000000000 at 0.0
%).a 1.000000000 01

6.*6666A70-01 0.0

6.274944570-01 5.5675031!0-01

K.IZ 2
5.CP45048990-01 5.952565580-01

GAINS
6.249582400-01 3.2608057IC-01

K.14 4
5.706002810-01 4.261785710-01

GAINS
S.47407715C-01 3.62S25010-01

5.21220326C-01 3.560GSSI81-01

K . 7
GAINS
5.121724200-01 3.523912470-01

5:064089SIC-01 3.506715420-01

K.A 9
5.056033500-01 3.51571690-01

GAIAS S
S!051432270-01 3.51460d460-01 .3450-1 31726-1

K16 11 GAt IS '
GANS .198601 35315015.05300933C-01 3.52043?SS0-015.1950-1 31705-1

1:13980-0 3.111320 5.051377300-01 3.517321670-01
K.- 19

K.I; 13 GAINS

9.052559030-01 3.516521610-01 5.0513748860-01 3.517329150-01

14K :14 20

3.5177620-1 -0513T9610-01 3.517330250-01

.I1St*66 99 D-Ol 3.51743062C-01 i

Figure 3-45 Discrete Time Kalman Filter Test
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0.0 10.0
/*

The results of this run are shown in Fig. 3-45.

9. Discrete Time Linear State Regulator (STREG)

This double-precision subprogram is used to compute

the discrete linear regulator feedback gains F(NS- K). The

discrete linear regulator problem can be stated as [12]:

given a time-invariant discrete system represented by

x(k+l) = Ax(k) + Bw(k)

where the states and controls are unconstrained, find an

optimal control u*(x(k), k) that minimizes the performance

index

J x (NS) H x(NS)

N- [T(k) Q x(k) + wT(k) R w(k)]

k=0 "

where

x(k): state vector (N x 1)

A : coefficient matrix (N x N)

B : distribution matrix (N x M)

w(k): system input vector (M x 1)
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J : performance index (scalar)

H : real symmetric positive semi-definite matrix
(N x N)

Q :real symmetric positive semi-definite matrix
(N x N)

R : real symmetric positive definite matrix (M x M)

NS : fixed integer greater than 0 (number of stages)

After solving the problem, one realizes that the

optimal feedback gains can be evaluated by solving the

following two equations only:
. . a . . & ft o ,4W . 0 f 0 . . . - .. .0 - 0 .. . 0 . ..

F(NS-K) = -(R+BT P(K-l)B] - 1 x [BT P(K-1)A] (1)

P(K) = [A+BF(NS-K) ]TP (K-1) [A+ BF(NS - K)] (2)

+ F T (NS-K)RF(NS-K) + Q

where F(NS-K) is the feedback gain matrix and P(0) = H.

The STREG subprogram determines the F(NS- K) matrix

for 0 < NS < 999 as K varies from one to NS. It also gives

the final value of the real symmetric P(K) matrix, i.e.,

P(NS). From these results the user can design the optimal

discrete system

x(k+l) = A x(k) + B w(k)

w(k) = F(k) x(k)
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where k = NS - K (a block diagram representation of the system

is shown in fig. 3-46). Note that P(NS) is presented so one

can also calculate the minimum cost for the NS-stage process

given some initial state x0 using the relation [17]

* =1 T
O,No(xo Xo P(NS) O

a. Input

The first input data card consists of the problem

identification, the A matrix dimension (N < 10) and the number
• BT

of inputs (M < 10). Then the A (N xN), B (MxN), H (Nx N),

Q (N xN) and R (M xM) matrices are presented one row at a time.

Finally the number of stages (0 < NS < 999) is given. The

following input format table further describes the required

data cards.

Entry Input Description Format Columns Used

1 Problem identification, 5A4, 212 1-20, 21-22,
system order (N < 10), 23-24
number of inputs (M > 10)

2 A(N xN) matrix (one row per 8El0.0 1-10, 11-20,
8ard for N < 8; one row per 21-30, etc.
two cards for N > 8)

T3 B (Mx N) matrix (one row per 8E10.0 1-10, 11-20,
8ard for N < 8; one row per 21-30, etc.
two cards f~r N > 8)

4 H (N xN) matrix (one row per 8E10.0 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

5 Q (Nx N) matrix (one row per 8E10.0 1-10, 11-20,
bard for N < 8; one row per 21-30, etc.
two cards f~r N > 8)
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Ii

x (k+l) xk)• Unit
Delay

wF (k

Figure 3-46 Discrete Linear Regulator 
Block Diagram
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Entry Input Description Format Columns Used

6 R (MxM) matrix (one row per 8E10.0 1-10, 11-20,
card for M < 8; one row per 21-30, etc.
two cards for M > 8)

7 Number of stages for the 13 1-3
process (0 < NS < 999)

b. Output

The problem identification, the discrete system

A matrix, the transpose of the distribution matrix and the

H, Q and R matrices are listed for reference. Then the feed-

back gain matrix F(NS- K) is printed as a function of the
-backwrd'tfme 'index(NS-'K) for K = 1 to K = NS. Finally, the

real symmetric P(NS) matrix is given.

c. Example

Given the linear discrete system [12]

x(k+l) 09974 0.05391 xk rO031w)

.1078 1.1591 LO.0539

the feedback gain matrix F(NS- K) is to be determined which

minimizes the performance measure

= N-1 0.25 Xl2(k)+ 0.05 x22(k) + 0.05 w2(k)I
k=0 1  2
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The data are then:

A 0:9974 0.0539

- .1078 1.159 1

BT [0.0013 0.05391

H 0

R =0.05

Order of the system, N = 2

Number of inputs, M -1

For this problem NS is chosen to be 200 and the

computer control and data cards are

II(standard OS JOB card)

/.EXEC. LINCON

//LINK.SYSIN.DD, *

INCLUDE SYSLIB (STREG)

//GO .SYSIN.DD. *
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STREG TEST 0201

0.9974 0.0539

-.1078 1.1591

0.0013 0.0539

0.0 0.0

0.0 0.0

0.25 0.0

0.0 0.05

0.05

S200 ......... ..."."."

/*

The results presented in fig. 3-47 show that

F(NS= K) approaches a constant matrix 5 F as K 200.

10. Multiple-Input Multiple-Output Control System
Decoupling (MIMO)

This subprogram is used to determine a feedback con-

control law

u(t) = G r(t) + F x(t)

5If a system is completely controllable and time invariant,
H = 0, and R and Q are constant matrices then [12]

F(NS-K) * F (a constant matrix) as NS -
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OISCRITE LIN4EAR STATE RFGULA7CR PROGRAM

PRCIRLE. tOENTIFICATION w STPEG TEST

TI-E A MATRIX
9.S?40O)Ce100-01 53CCCCCO-02

-1.07ao30o0C-O1 C.L00000CO 00

11-F I 1ATRIXL

1 .3000000OC-03 5.39COCCOOO-02

Thf H MATRIX

8:3 8:0
Thl 0 MATRIX

2.90ocoO0-oi 0.0
0.0 5.0C~cGOC0C-02

UP A MATAIX
S .0000OOO-02

K' 14
GAINS

K *19 I -5.522296540-01 -9.901519C 0f)
0.1N 0.0 K; )* t . .

K a 19 -S.522296540-01 -s:.i*? 09O 00
-6A.I?"' 30-04 -4.Z6431970-'32 U1

I 9 -5.522296S40-01 -3.465015Csc 00
GAIS'9
-:.132448690-03 -1.473444140-01. ; 11

GALN
:,;S196 -5.1,22Z96540-01 -5.5bio015C9)00

-1.664041300-02 -2.61201131C-01 GAINS0

K1 * 19 5 -5.S22296540-0l -9.969015C90 00
GAINS
-Z.431895110-02 -4.122CETC5C-1 GA.NS

K - 194 -5.52229654D-01 -5.96SO15C9 00
GANS
-3.12tS',17T7002 -6.06210446C-01 K a

GAINS
K*193 -5.522296540-01 -5.549015C50 01)

GAINS
-2.4S0354440-02 -6.56139S5980-01 K ?

K*192 G-S.S90C1 -S.S64O15CSO 00
GAINS

-2.385251940-04 -1.1597283S0 00 K * A

GAINS 11-5.522296540-01 -5.96SOi5c0o 00
4 .i612 9417 0-02 -1.51739UMO 00 K Uz 5

GAIN 190 -5.522296540-C1 -5.5SSLSCC9C 00

L.297456460-01 -1.420526140 00 X
GA1 4S

0 w 189 -5.522296540-01 -S.1QOI9sCo a*
GAINS
2.417541S60-01 -2.353149430 00 K . 3

GAtNS
K a180 -5.5222q6S4D-01 -5.969012050 D0

N 2 6 99 1 9 0 -0 1 -2 .79 3 SC 45 0 00
GAINSS

j.45256077041 -3.220042300-00- K * 1GAINSI
lobIS -5. 522296540-01 -S.94tOMID1 00

7.1914j314D-01 -3.6113CSS&C 00 K p-
K a 165 -M22290540-01 -5.4164013croa 00

I2 4 1.920-oi -3.11539S2450 00

rA.t,56203 00 -4.24L7514100* AND THE P12001 MATRIX IS
1.5262610 E .134 r81:017364140 0 VI.C59.44fi 8

Figure 3-47 Discrete Linear State Regulator Test
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for an Nth order system

*(t) = A x(t) + B u(t)

y(t) = C x(t)

such that the control system is decoupled, i.e., the ith input

ri(t) affects only the ith output yi(t). Notice that the

subprogram applies only if the number of inputs is exactly

the same as the number of outputs. The computer calculates

both the feedback gain matrix F and the command input gain

matrix G. The user only has to feed in the coupled system

matrices A, B and C and specify, arbitrarily, the desired

closed-loop poles of each ith transfer function Yi (s)/Ri (s).

The theory regarding the algorithm used for decoupling

is not presented here. For this, the reader is referred to

[1]. Sufficient information is included, however, to illus-

trate the concepts and to permit easy use of the subprogram.
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a. Input

The problem identification, the system order (N

less than or equal to ten) and the number of inputs and outputs

(M less than or equal to ten) are given on the first card

according to the format shown on the input format table for

MIMO. Then the A matrix (NxN) is entered, followed by the

BT matrix (MxN) and the C matrix (MxN), one row at a time.

Note that B is transposed and the number of inputs must equal

the number of outputs.

Next the oDtion card is punched. If the option

is blank, the phase variable form of t deroupled -system is. .. "

obtained and the subprogram returns to begin another problem.

If options P or F are selected, the control law u(t) necessary

to achieve a decoupled system with closed-loop poles at loca-

tions specified by the user is determined. If option = F,

the next cards give the desired poles of Y1 (s)/R 1 (s).

According to the convention established before,

if option F is selected the real part of a root is entered

as being positive if it lies in the left-half plane, negative

if in the right-half plane and only the positive imaginary

part of a complex pair is given (see p. ). If option P is

selected, the coefficients of the characteristic polynomial

of YI(s)/RI(s) are entered in ascending order, the coefficient

of the highest order term always being unity.

The subprogram then returns to read option P or

F and the second decoupled subsystem desired closed-loop poles,

and so on for the M subsystems.
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The design of a decoupled system requires two

separate runs of the subprogram. First the user must determine

if it is possible to decouple the system and, if so, obtain the

order of each decoupled subsystem Yi(s)/Ri(s). This is done
1 1

by leaving the option card blank. The order of the denominator

polynomial becomes the order of each decoupled subsystem

which determines the number of poles or the degree of the

characteristic polynomial to be selected for closed-loop

calculations.

Options P or F are selected for the second run

an&.che -subpogram-cornpttez the control law u(t) which

decouples the system and places the poles at the selected

locations. The following input format table summarizes the

pertinent information.

Entry Input Description Format Columns Used

1 Problem identification, order 5A4, 212 1-10, 21-22,
of the system (N < 10), number 23-24
of inputs and number of
outputs (M > 10)

2 A matrix (NXN) (one row per 8F10.3 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

3 BT matrix (MXN) (one row 8F10.3 1-10, 11-20,
,er card for N < 8; one 21-30, etc.
row per two cars for
N > 8)

4 C matrix (MxN) (one row per 8F10.3 1-10, 11-20,
card for N < 8; one row 21-30, etc.
per two cards for N > 8)
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Entry Input Description Format Columns Used

5 blank = analysis only Al 1
option Option P = closed-loop

polynomial input
F = closed-loop poles

input

6 Polynomial coefficients in 8F10.3 1-10, 11-20,
(iff ascending power of s 21-30, etc.

option (see complete description
=p) P- 31 )

7 Roots of characteristic poly- 8F10.3 1-10, 11-20,

(iff nomial (one root per card) 21-30, etc.
option (see complete description
=F) P- 32)

The above information should become clear from the example

presented in part c.

b. Output

The problem identification, A, BT and C are listed

for reference. Then the decoupled phase variable represen-

tation of each subsystem is printed. The denominator poly-

nomial in ascending powers of sis given first, followed by

the numerator polynomial both in unfactored and factored form.

It should be noted that the subprogram outputs the cancelled

zeros of Y (s)/R (s) as well.

If closed-loop calculations have been requested,

by letting option equal P or F, each subsystem closed-loop

polynomial is printed again both in unfactored and factored
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form. Finally the feedback gain matrix F and the control

gain matrix G are presented.

In terms of the original system, the resulting

closed-loop decoupled system is

x(t) = A x(t) + B u(t)

y(t) = C x(t)

u(t) = F x(t) + G r(t)

or, in a form suitable for graphical time response simulation,

x(t) = (A +BF) x(t) + BGr(t)

y(t) = c x(t)

It must be pointed out that not every system can

be decoupled. If it cannot, the subprogram is interrupted

and the message "BSTAR IS SINGULAR - THIS SYSTEM CANNOT BE

DECOUPLED" is printed. It is also possible that a subsystem

may be uncontrollable. This is indicated as such on the

output listing.

c. Example

A two-input two-output system [13] is to be

decoupled both during transient-period and steady-state.
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s.1

The first subsystem must approach a second order response to

a step input with a natural frequency of 10, a damping factor

of 0.4 and no steady-state error. The second subsystem must

also approach a second order response to step input but with

a natural frequency of 4, a damping factor of 0.6 and no

steady-state error.

The original system is shown both in block diagram

and signal flow graph form in Figures 3-48 and 3-49.

(1Yl(t)

J, P, I +_

.Y2 (t)
S+43

Fig 3-48 Multiple-Input Multiple-Output Control
System (Block Diagram)
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11/s 1 1/s

U11

U1  X2  Xl
7 -12

2

1 1/s 1 1 1

-. 3 -2

Fig 3-49 Multiple-Input Multiple-Output
Control System (Signal Flow Graph)

The state variable and output equations can be directly

written as

1= -12x 1 + x 2 +2x 3

2= -7x 2 +U1

3= 4x 1 -2x 3 + 4

4= -4.3x 4 + 2

Yl= x3

234



From these, the matrices A, BT and C are seen

to be:

A = -12 1 2 0

0 -7 0 0

4 0 -2 1

0 0 0 -4.3

B T [0 1I

00 1 1

C- [l 0 0

A first run of the subprogram can be made to

verify if it is possible to decouple the system and find the

order of each subsystem. The computer cards are

// (standard OS JOB card)

//^ EXEC^LINCON

//LINK.SYSIN^ DD^*

^^INCLUDESYSLIB (MIMO)

/*

//GO.SYSIN^ DD^*

MIMO TEST ONE 040202

-12. 1.0 2.0 0.0

0.0 -7.0 0.0 0.0

4.0 0.0 -2.0 1.0
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0.0 0.0 0.0 -4.3

0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

(blank card)
/*

The result shown in Fig. 3-50 reveals that both

subsystems are second order. The closed-loop pole locations

can then easily be selected for each subsystem. For the first

one, a second order response is desired such that wn = 10,

= 0.4. Thus,

s2 + 2wns + wn2 = s2 + 8s + 100

For the second subsystem, the desired response requires that

Wn= 4 and C = 0.6, so

s2 + 2Cws + wn2  s 2 + 4.8s + 16n n

- (s+2.4+j3.2) (s+2.4- j3.2)

The computer deck is then modified as follows:

// (standard OS JOB card)

//^EXEC^LINCON

//LINK.SYSIN A DD^*

^^INCLUDE^SYSLIB(MIMO)

*
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VULTI-I4U?. MATJI-t..T.'uT ONC64AP

Ta-F A PAfRIX

-1.?30003E 01 ~
:,.coCC0 00 0.0 -2.010009 00 1.10040

3.0 0. C.0 -'..00

. 1.00 0000.C0
3.3 0.0 c~o 4.30001 008

0:4COC 0 0 .0 C.0 1000F0

tj0.0 I.O0ow of) 000

')kC3U9%Ef1 'wASE V*A1*RLE *EPPESENThYInN~

000 S.U4SYs~TFq I

aV41]u11AT3P PCLYNCOIAL - IN ASCF%llPW. DCwiEUS OF S
1.90135F-06 -3.81410E-06 1.Ccca0 00

%44T0R POLVY4r~WAL - IN #SCEN4P[W( P'n'mS OF S

1.003000 go0

~** S64SYSTE' 2
0V~nflNIfATI)U 9O1..Y#CWAL - 114 ASCfP4IG PC~ot;S 10 S

0.0 0.0 1.00000! 00

OUI4ERATOR PALYNIAL IN lb £CEN~OMY POW11I OF S

1.4940CA 00

Figure 3-50 Computer Output for MIMO Test One
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//GO.SYSIN^ DD-*

MIMO TEST TWO 040202

-12.0 1.0 2.0 0.0

0.0 -7.0 0.0 0.0

4.0 0.0 -2.0 1.0

0.0 0.0 0.0 -4.3

0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

P

100. 8.0 1.0

F

2.4 3.2

/*

From the results given in Fig. 3-51, the decoupled

compensated system can be written in terms of the original

system.

x(t) A + BF x(t) + BG r(t)

= -12 1 2 0 0 0~(t) + r (t)
-156 4 -12 -2 100 0

4 0 -2 1 0 0

36.8 -4 -18.4 -2.8 0 J
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NIJLTI-ZhPUTv kULI-CU.TPUT 
PMCORA'

PAtCRLUM IDENTIFICATION - IISO TFSr Two

TIE A M4AT IX

-1.20000E. 01 1aco 2OCO 0 1 0130O 00 0 0

1003.0 o -0. SOMM 00 .30000T 00

0. 1OCCO 0 50000F
0.0 0.0 C.0 .00E 0

00CU 008 c :

1.07SCb -. ?-C10000~ 00

0.0030 00 lonr D

"006 SUgSYST14 I

OEP.OPIdATOR PCLVNOPI*L - IN. ASCEN40I144 PfIWFR5 OP S

0.03 -b -. 01?FC 1.CCO0O0 00

NUvFAATOA POLYNZOI*L - IN~ hSCEN0Id(G POWERS OF S

1.04MCQ00 C

3.0 0.0~ytt I.c~o.

CLOSS-LOOP PCOLNCPIAL - If. ASCN04G POWES OP S
A.00300l Go SU0mE00 I.)0E0

CLOSEO-Li3P POLES RALPA? NG GAY AR

so" SUASYSTE" I

CLOSED-LOOP PCLYNCIAL - IN *SCr-Fe3!NG PCVWERS Of S

1.bojoal' 01 8.dOOCGE 00 I.,0000F 00

CLO0SEO-LIJP POLFS R *L PAST M"Arg AI YE PART
-4E;c 0 00q 00 -4.1 is & 008

.999400 .1000081a

URGjA114L STATS VARIABLES

FEPREACK GAIN PATPIX

-1. 30l f ItO~aO 0 1.20000', 01 -1. 0009O 88
A.6300 0 4. aco 00 -1034000. 0 .00 0 0

* CCNTMO. GAING PATRIA

0.0 *1.AOOCOE O1

Figure 3-51 Computer Output for MIMO Test Two
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yl(t) = x1 (t)

y2 (t) = x 3 (t)

For comparison with the actual results given in

[13], the decoupled compensated system was simulated

using the subprogram GTRESP, for a unit step input. Note

that since GTRESP only allows for single-input single-output

simulation, two runs must be made. The data for the sub-

program is

r(t) = 1.0

A = -12 1 2 0

-156 4 12 -2

4 0 -2 1

36.8 -4 -18.4 -2.8

Tb = (0 100 0 0] , for the first channel

Tb = [0 0 0 16] , for the second channel

c = [1 0 0 0] , for the first channel

c = (0 0 1 0] , for the second channel

kT 4
J =0
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Ki

X(t) 0

TZERO - 0. TF =10.

DT = 0.01 FREQ =20

The output yl(t) and Y2 (t) were to be plotted for

the first and second run, respectively. The complete com-

puter deck for GTRESP follows.

II(standard OS JOB card) ,TIME=2

1/EXECLINCONF

//FORT.SYSIN .. DD.*

SUBROUTINE RPIND (T, R)

R= 1.0

RETURN

END

I/LINK. SYSINA DD,..*

.INCLUDESYSLIB (GTRESP)

,. AENTRY..GTRESP

I/GO. SYSINMDA*

GTRESP MIMO, 04

-12.0 1.0 2.0 0.0

-156.0 4.0 12.0 -2.0
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4.0 0.0 -2.0 1.0

36.8 -4.0 -18.4 -2.8

0.0 100.0 0.0 0.0 Note: these bT and
matrices are for

1.0 0.0 0.0 0.0 the first channel
simulation

0.0

1.0

0.0

0.0 10.0 0.01 20.

Y

/*

For the second channel, the subprogram is run a second time

changing the bT and c matrices appropriately. Figures 3-52A

and 3-52B show that the response effectively meets the

specifications given initially.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The eighteen subprograms presented in the third chapter

constitute the actual linear control subroutine library and

this thesis, the user's manual that goes with it. The sub-

programs are easy to access and have proven to work well.

(They were all tested by solving several textbook problems

and, hopefully, all the "bugs" have been eliminated.) Very

little programming is necessary so the user can concentrate

on control problems rather than worry about computational

details. The LINCON library is indeed a nice tool for

analysis and design of linear control systems.

Furthermore, the library can still be easily improved and

expanded. Any FORTRAN subroutines can be modified and

replaced or new subroutines added by following the simple

instructions given in Appendix A. Note that, as was done in

reference [11, the subprograms were written to handle

systems of order less than or equal to ten. This should

take care of most of the problems encountered. If, however,

it becomes necessary to solve higher order systems using

these subprograms, remember that it can easily be accom-

plished by re-dimensioning the arrays of the appropriate

subroutines and replacing them in the load module (again

following the procedure given in Appendix A).

Finally, the following recommendations should be taken

into consideration
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-- . (1) by the users,

- always use the proper job control language

cards (i.e., the ones described in Chapters

II and III) to access the subprograms.

(2) by the future LINCON library "programmer",

- before making any changes, be certain the

control cards are exactly those required

for the job. Double checking with a

consultant is always a good idea.

- always keep a copy of the subroutines'

listings and the card decks. It is not

possible to obtain any listings or card

decks from a load module.

- every modification should be documented

(romplete with examples) and the information

distributed to the users.

- after changes have been implemented and

tested, a back-up copy of the new LINCON

data sets should be created to replace the

one on magnetic tape (as specified in

Appendix A).
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APPENDIX A

The LINCON Data Sets

All the linear control subprograms described in Chapter

III were placed in a load module (pre-processed by the

linkage editor) on Disk 02 of the Naval Postgraduate School

OS/MVT IBM/360. Procedures were cataloged so anyone can

easily access the subprograms under OS Batch. The job con-

trol language cards to be prepared to use the load module

linear control library are given in Chapter II.

The following paragraphs now present the actual content

of the load module and explain the procedures to

- modify or add members

- change the data set's expiration date

- delete the data sets

- list the member names and check the disk space

- compress the data sets.

Also, since a back-up copy of the data sets was created, the

procedure to restore the load module linear control library

is given as well.

However, before any attempt is made to "play" with the

load module, it is suggested that the programmer familiarize

himself with the latest computer procedures and the linear

control subroutine library. References 14 and 15 should

also be read.
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1. Content of The Library.

The linear control subroutines library contains a

total of fifty-two subroutines. These are given in Table

A-1 indicating what subroutines are used by the subprograms.

A detailed description of most of the subroutines is presented

in [1]. Note that several minor changes had to be made to

the subroutines in order to implement the library. These

modifications do not, however, change the purpose or the

efficiency of the programs. Anyone interested in the pro-

gramming aspects of the library must utilize both the sub-

routine listings and reference [1].

2. Data Sets Utilities

It is probable that the content of the LINCON sub-

routines library will have to be modified at one time or

another. The following paragraphs outline the procedure

and give the job control language cards necessary to carry

out the changes.

a. Data Set Listing

The following set of control cards is used to

list the load module library content and the spaces it occupies:

// (standard OS JOB card)

//^ EXEC^PGM=IEHLIST

//SYSPRINT^ DD ^ SYSOUT=A

//DDI^ DD ^ UNIT=3330,VOL=SER=DISK02,DISP=SHR

//SYSIN A DD ^ *

LISTVTOC ^ FORMAT,VOL=3330DISK02,DSNAME=FO718.LINCON

^ ^ LISTPDS A VOL=3330DISK02,DSNAME=F0718.LINCON

*
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W 0 r.ad E-4

MIC x4( 314 0
0 p- W W §E4C1 ME

CALCU x
CHREQ x x
CHREQA x x x x
DET x x x x x
DIVP x x
DMULT x k
FORM x
GRAPH x
HERMIT x x x
LINEQ x x
MAXI x
MPY x
MULT x x x
NORMP x
PADD x
PEXCG x
PFEXP x
PHNOM x
PMUL x
POLRT x
PROOT x x x xxx x x x x
PVAL x x
RUNGE x
SEMBL x x x x xx
SIMEQ x x x
SIMUL x x x
SORT x
SPLIT x x x x
STMST x x
SUBP x
TRESP x
VECTEQ x
YDOT x
Y8VSX x

Table A-i Subroutines Cross List

(*) These subprograms were loaded with all their necessary
subroutines. Each one of them requires an external subroutine
(see Chapter III).

(**) The subprogram MAIN is used to call all the sub-
programs (operation under Mode Three). It requires 450K core.
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All the subprograms and subroutines names are

listed in alphabetical order and the space occupied and

unoccupied given in terms of number of tracks and number

of cylinders.

b. Changing Expiration Date

The expiration date of the subroutine library

must be changed approximately every six months. The control

cards used to perform the task are:

// (standard OS JOB card)

//^ EXEC. PGM=CEXPDATE

//SYSPRINT^ DD^ SYSOUT=A

//DDI^ DD ^UNIT=3330,VOL=SER=DISK02,DSIP=OLD,DSN=F0718.LINCON,

//^ LABEL=EXPDT=yyddd
/*

where yy=year (e.g. 80)

and ddd=day (e.g. 365)

The last expiration date given was 80182, i.e. 01 July 1980.

The computer centre normally sends a reminder listing the

data sets that are about to expire.

c. Adding New Members or Replacing Existing Ones

The following control cards are required to add

a new member or replace an existing one:

// (standard OS JOB card)

//^ EXEC,, FORTCL, PARM.LINK-'NCAL,MAP,LIST'

//FORTSYSIN .DD^ *

Subroutine to be modified or added

*
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pi

//LINK.SYSLMOD^ DDUNIT=3330,VOL=SER=DISK02DISP=SR,

/ ^DSN-F0718.LINCON (member)

/*

where "member" is the name of the subroutine to be modified

or added. Note that the complete set of cards representing

the subroutine called "member" must be included. Before

placing the subroutine in the load module library, the com-

puter compiles it. If any error is found, the linkage is

not executed and the new subroutine is not placed in the load

module. The user must carefully check the computer output

and make sure the message "member now replaced in data set"

is printed. If not, he must correct any error and redo the

procedure. Note that a lack of space can also prevent the

computer from linking to the load module. If this last

situation occurs the user should run the "data set listing"

(part a) control cards to see how much space is available.

If sufficient space can be allocated, he must run the

"compressing data sets" control cards (part e) to release

any unused space in the data sets and then execute the

addition or replacement.

d. Removing Data Sets

It is sometimes necessary to remove undesired

members from the library (to create space or erase useless

programs). The following control cards are used to delete

one or several members from the subroutine library:
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// (standard OS JOB card)

/^ EXEC- PGM=IEHPROGM

//SYSPRINT^ DD^ SYSOUT=A

//DD1 ^ DD^ UNIT=3330,VOL=SER-DISK02,DISP=SHR

//SYSIN^ DD^ *

^ ^ SCRATCH ̂ VOL=3330=DISK02,PURGE,DSNAME=FO718.LINCON,MEMBER=memberl

^ ^ SCRATCH^ VOL=3330=DISK02,PURGE,DSNAME=F0718.LINCON,MEMBER=member2

/*

where memberl and member2 are the subroutines to be erased

from the module. Here the programmer must be extremely

careful while using this utility. Mistakes can be very

costly (from scratching the wrong subroutine to erasing the

whole subroutine library). For instance, using

SCRATCH VOL=3330=DISK02,PURGE,DSNAME=F0718.LINCON

would erase the entire LINCON subroutine library. Be careful.

Also note that scratching a member does not make

the space it occupied immediately available. The "compressing

data sets" utility must be run to release the space (see

part e).

e. Compressing Data Sets

The following control cards are used to free

unavailable space in the data set:

// (standard OS JOB card)

//^ EXEC^PGM=IEBCOPY,REGION-100K

//SYSPRINT^ DD- SYSOUT=A

//DDl^ DD ^UNIT-3330,VOL-SER-DISK02,DSN-FO718.LINCONDISP-OLD

//SYSUT3A DD ^UNIT-SYSDA,SPACE-(CYL,(1,1)),DISP-(,DELETE)
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//SYSUT4-^ DD ^UNIT=SYSDA,SPACE=(CYL, (1,1)),DISP-(,DELETE)

//SYSIN ^DD ^*

^ COPY^ OUTDD=001,INDD=DD1

/*

Note that the use of this utility is somewhat

dangerous since a power failure or a machine check during

compression will make the data set unaccessible by any

program [13].

3. Back-up Copy

A back-up copy of the partitioned data sets was made

by copying them onto the magnetic tape NPS 705, file 01.

The control cards that were used to create it are:

// (standard OS JOB card)

//ONE ^EXEC^ PGM=IEHMOVE,REGION=80K

//SYSPRINT^ DD. SYSOUT=A

//SYSUTl DD ^UNIT=SYSDA,SPACE=(CYL,(3,1))

//DDX ^DD ^UNIT-3330,VOL=SER-DISK02,DISP=SHR

//TAPE ADD ^UNIT=3400-3,VOL=SER=NPS705,DISP+(,PASS),DCB=DEN=3

//SYSIN^ DD^ * in column 72

COPY^ PDS+F0718.LINCON,TO=3400-3-(NPS705,1), X

FROM-3330=DISK02,TODD=TAPE

/* in oolumn 16

Since it is possible that the data sets rmay be

lost one way or another, it is imperative to have such a

back-up copy. To restore the LINCON data sets, the programmer

must first re-allocate space by running the following job

control cards:
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// (standard OS JOB card)

//TWO- EXEC ^PGM=IEFBR14

//DDL ^ DD ^UNIT=3330,VOL=SER=DISK02,DISP=(NEW,KEEP),

// .^DSN-F0718.LINCON,LABEL=EXPDT=yyddd,SPACE=(Cyl,(2,1,10))

1*

where yy=expiration year

ddd=expiration day

Finally, to restore the data sets one only has

to run the program given below.

// (standard OS JOB card)

//THREE - EXEC - PGM=IEHMOVE,REGION=80K

//SYSPRINT ^ DD - SYSOUT=A

//SYSUTI - DD ^ UNIT=SYSDA,SPACE=(CYL,(3,l))

//DDX ^ DD ^ UNIT=3330,VOL=SER=DISK02,DISP=SHR

//TAPE ^ DD ^ UNIT=3400-3,VOL=SER-NPS705,DISP=(OLD,PASS),DCB=DEN=3

//SYSIN ^ DD A * column 72

COPY^ PDS=F0718.LINCON,TO=3330=DISK02, X

FROM=3400-3= (NPS705, 1),FROMDD=TAPE
t

1* column 16
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APPENDIX B

List of the Sources for the Examples of Chapter III

The following table lists the references from which

the examples worked out in Chapter II originated.

Section Example Reference

IIIB l.c Eveleigh, V.W., Introduction to
Control System, p. 568 (#3),
McGraw-Hill, 1972.

2.c Shinners, S.M., Modern Control
System - Theor' and Application,
2nd ed., p. 364 (#7.26), Addison-
Wesley, 1978.

3.c Brogan, W.L., Modern Control Theory,
p. 35 (#2.10), Quantum Publishers,
1974.

3.d Ogata, K., Modern Control Engineering,
p. 517, Prentice-Hall, 1970

IIIC 2.c Ogata, K., Modern Control Engineering,
p. 275, Prentice-Hall; 1970

3.c Kirk, D.E., Optimal Control Theory -
An Introduction, pp. 34-42, Prentice-
Hall, 1970.

IIID l.c Ogata, K., Modern Control Engineering,
p. 797, Prentice-Hall, 1970.

2.c Kirk, D.E., Optimal Control Theory -
An Introduction, p. 28, Prentice-
Hall, 1970.

3.c Ogata, K., Modern Control Engineering,
pp. 728-729, Prentice-Hall, 1970.

4.c Eveleigh, V.W., Introduction to
Control System Design, pp. 353-356,
McGraw-Hill, 1972.
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Section Example Reference

5.d Eveleigh, V.W., Introduction to
Control System Design, pp. 357-
360, McGraw-Hill, 1972.

6.d(l) Chen, C.T., Introduction to Linear
System Theory, p. 296, Holt,
Rinehart and Winston, 1970.

6.d(2) Same as 5.d

7.c(l) Kirk, D.E., Optimal Control Theory -
An Introduction, p. 41, Prentice-
Hall, 1970.

7.c(2) Kwakernaak, H. and Sivan, R.,
Linear Optimal Control Systems,
pp. 347-351, Wiley-Interscience, 1972.

8.c Parker,S.R., Digital Control
Systems (Class Notes), 1978.

9.c Kirk, D.E., Optimal Control Theory -
An Introduction, Prentice-Hall, 1979.

10.c Mowrey, J.T., Compensator Optimization
in Multiple Input Multiple Output
Control Systems, pp. 26-27, Master's
Thesis, Naval Postgraduate School,
Monterey, 1979.

Table B-1 List of References for the Examples
Worked in Chapter III
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